605
Views
36
CrossRef citations to date
0
Altmetric
Original Articles: Research

miR-451 enhances erythroid differentiation in K562 cells

, &
Pages 686-693 | Received 01 Oct 2009, Accepted 14 Jan 2010, Published online: 02 Jun 2010
 

Abstract

Erythropoiesis is a multistep process regulated at the molecular level by intrinsic and extrinsic factors including microRNAs (miRNAs). We previously identified aberrant expression of miR-451 and miR-150 in polycythemia vera (PV) erythroid differentiating cells. To address the functional relevance of these miRNAs in erythroid differentiation, we employed synthetic mimics and inhibitors of miR-451 and miR-150 in erythroid differentiating K562 cells. We observed that miR-451 up-regulation and miR-150 down-regulation are associated with progression of erythroid maturation in K562 cells. Further, enforced expression of miR-451 promoted erythroid differentiation. Inhibition of miR-150 reduced hemoglobinization of K562 cells. Microarray data suggested potential targets regulated by miR-451: UBE2H, ARPP-19; and by miR-150: MS4A3, AGA, PTPRR. Our results demonstrate that miR-451 is involved in the regulation of erythroid differentiation and functions as an enhancer of differentiation. These data support the concept that aberrant expression of miRNAs may contribute to abnormal erythropoiesis such as that of PV.

Declaration of interest: The study was supported by NR/9236-3 IGA MZd CR, VA Merit Review Award, and 1P01CA108671-O1A2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.