694
Views
19
CrossRef citations to date
0
Altmetric
Original Articles: Research

Identification of new possible targets for leukemia treatment by kinase activity profiling

, , , , , , , , , & show all
Pages 122-130 | Received 02 Sep 2010, Accepted 21 Oct 2010, Published online: 06 Dec 2010
 

Abstract

To date, the biology of acute leukemia has been unclear, and defining new therapeutic targets without prior knowledge remains complicated. The use of high-throughput techniques would enable us to learn more about the biology of the disease, and make it possible to directly assess a broader range of therapeutic targets. In this study we have identified comprehensive tyrosine kinase activity profiles in leukemia samples using the PamChip® kinase activity profiling system. Strikingly, 31% (44/120) of the detected peptides were active in all three groups of leukemia samples. The recently reported activity of platelet-derived growth factor receptor (PDGFR) and neurotrophic tyrosine kinase receptors (NTRK1 and NTRK2) in leukemia could be appreciated in our array results. In addition, high levels of peptide phosphorylation were demonstrated for peptides related to macrophage stimulating 1 receptor (MST1R). A provisional signal transduction scheme of the common active peptides was constructed and used to specifically select an inhibitor for leukemic blast cell survival assays. As expected, a dose-dependent decrease in leukemic blast cell survival was achieved for all leukemia samples. Our data demonstrate that kinase activity profiling in leukemic samples is feasible and provides novel insights into the pathogenesis of leukemia. This approach can be used for the rapid discovery of potential drug targets.

Declaration of interest: E.S.J.M. de B. is supported by a grant from the Dutch Cancer Society (grant number 3661). A. ter E. is supported by a grant from the Foundation for Pediatric Oncology Groningen, and is supported by a grant from the KiKa (grant number 57).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.