216
Views
61
CrossRef citations to date
0
Altmetric
Research Article

Hyperbranched dendritic nano-carriers for topical delivery of dithranol

, , &
Pages 497-506 | Received 29 Aug 2012, Accepted 28 Jan 2013, Published online: 17 Apr 2013
 

Abstract

The purpose of the current investigation was to explore the potential of polypropylene imine (PPI) dendrimers to deliver dithranol (DIT) topically and to evaluate its encapsulation, permeation and skin irritation potential. PPI (5.0 generation, 5.0 G) dendrimers and DIT-loaded PPI (DIT–PPI) were prepared and characterized by spectroscopy and transmission electron microscopy. DIT encapsulation, in vitro skin permeation study, skin irritation studies, fluorescent studies and tape stripping studies were performed. Loading of DIT was found to be pH dependent with maximum encapsulation at acidic pH (1.0 ± 0.02, 17.2 ± 0.56 and 57.1 ± 1.32% at 7.4, 5.5 and 1.2 pH, respectively). DIT–PPI showed significantly enhanced permeation rate constant and lesser skin irritation (11.61 ± 1.80 μg/cm2/h and 1.0, respectively) when compared with the plain DIT solution (2.72 ± 0.31 μg/cm2/h and 2.3, respectively). Skin separation studies and confocal laser scanning microscope images showed that the dye-loaded dendrimers exhibits deposition of dye in pilosebaceous compartment. These studies demonstrate that PPI can be exploited to improve the topical bioavailability of the molecules in a controlled pattern. The enhanced accumulation of DIT via dendrimer carrier within the skin might help optimize targeting of this drug to the epidermal and dermal sites, thus creating new opportunities for well-controlled, modern topical application of DIT for the treatment of psoriasis.

Acknowledgements

The authors are thankful to M/s Agon Pharma Ltd., Pune, India, for providing the drug sample.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.