550
Views
46
CrossRef citations to date
0
Altmetric
Communication

Smart microneedle coatings for controlled delivery and biomedical analysis

, , , &
Pages 790-795 | Received 25 Mar 2014, Accepted 03 May 2014, Published online: 03 Jun 2014
 

Abstract

The work presented demonstrates an unconventional approach in the preparation of smart microneedle (MN) coatings utilising electrohydrodynamic atomisation (EHDA) principles. Stainless steel (600–900 µm in height) MNs were coupled to a ground electrode (in the EHDA coating set-up) with the deposition distance and collecting methodology varied for an ethanol:methanol (50:50) vehicle system. The preparation of nano- and micrometre-scaled pharmaceutical coatings was achieved. Fluorescein dye (serving as potential drug, sensory materials or disease state markers) and polyvinylpyrrolidone (PVP, polymer matrix system) formed the remaining components of the coating formulation. Based on these excipients and by varying the coating process, particles (100 nm to 3 µm) and fibres (400 nm to 1 µm) were deposited directly on MNs in controlled and selectable fashion (flow rates variable ∼5–50 µL/min, applied voltage variable 6–19 kV). These demonstrated options for multiple targeting and analysis applications. The underlying EHDA process permits room temperature fabrication, controlled output and scale-up potential for emerging MN devices as drug systems or lab-chip testing devices.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.