5
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Apparent Upregulation of Na+, K+ Pump Sites in SHR Skeletal Muscle with Reduced Transport Capacity

, , &
Pages 645-652 | Published online: 03 Jul 2009
 

Abstract

Slow-twitch, oxidative skeletal muscles in SHR exhibit several physiological defects, including a reduced ability to maintain force during high frequency repetitive stimulation (1). Muscle fatigue may be produced by one of a variety of factors acting at different levels of the neuromuscular system. Several lines of evidence, however, suggest that SHR soleus fatigues more rapidly than WKY soleus because SHR muscles allow more K+ to accumulate in the extracellular space during repetitive muscle activity. An increase in extracellular K+ can lead to a failure in the generation or conduction of muscle action potentials. Comparison of the compound action potentials recorded from SHR and WKY muscles during repetitive stimulation provided evidence for a decrease in excitability of SHR soleus. Since the K+ released from muscle fibers during exercise is returned to the fiber principally via the activity of the Na+, K+ pump, the increase in extracellular K+ in SHR muscle may reflect a decrease in pump capacity. Measurements including intracellular K+ and Na+ content at rest, the level of hyperpolarization produced by the addition of epinephrine and insulin to SHR soleus and the post-exercise recovery of resting membrane potentials all appear to indicate that Na+, K+ pump capacity is reduced in SHR soleus muscles. Nonetheless, ouabain binding studies show a significantly greater number of pump sites in SHR muscles. The data suggest that Na+ pump activity is decreased in SHR soleus muscles without an apparent reduction in either the number of pump sites or in pump binding affinity.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.