284
Views
20
CrossRef citations to date
0
Altmetric
Research Article

Protective role of a coumarin-derived schiff base scaffold against tertiary butyl hydroperoxide (TBHP)-induced oxidative impairment and cell death via MAPKs, NF-κB and mitochondria-dependent pathways

, &
Pages 620-637 | Received 24 Nov 2010, Accepted 31 Jan 2011, Published online: 11 Mar 2011
 

Abstract

The present study investigated the antioxidant signalling mechanism of a coumarin-derived schiff base (CSB) scaffold against tert-butylhydroperoxide (TBHP) induced oxidative insult in murine hepatocytes. CSB possesses DPPH and other free radical scavenging activities. TBHP reduced cell viability and intracellular antioxidant status accompanied by an increase in intracellular ROS production in hepatocytes. TBHP also activated phospho-ERK1/2, phospho-p38 and NF-κB, altered the Bcl-2/Bad ratio, reduced mitochondrial membrane potential, released cytochrome C and activated caspase 3, suggesting that TBHP induced oxidative stress responsive cell death via apoptotic pathway. FACS analysis and DNA fragmentation studies also confirmed the apoptotic cell death in TBHP exposed hepatocytes. Treatment with CSB effectively reduced these adverse effects by preventing the oxidative insult, alteration in the redox-sensitive signalling cascades and mitochondrial events. Combining, results suggest that antioxidant property of CSB make the molecule to be a potential protective measure against oxidative insult, cytotoxicity and cell death.

This paper was first published online on Early Online on 18 March 2011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.