155
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Disruption of redox homeostasis and induction of apoptosis by suppression of glutathione synthetase expression in a mammalian cell line

, &
Pages 1040-1051 | Received 08 Mar 2011, Accepted 21 May 2011, Published online: 16 Jun 2011
 

Abstract

The stable HepG2 transfectants anti-sensing expression of the glutathione synthetase (GS) gene exhibited delayed cell growth and increased reactive oxygen species (ROS) level. After the treatment with hydrogen peroxide, the intracellular ROS level was much higher in the stable transfectants than in the vector control cells. However, the GSH levels decreased more significantly in the stable transfectants than in the vector control cells, in the presence of hydrogen peroxide. Hydrogen peroxide-induced apoptosis of the stable transfectants was notably higher than that of the vector control cells. The GS anti-sense RNAs rendered the HepG2 cells more sensitive to growth arrest caused by glucose deprivation. They also sensitized the HepG2 cells to cadmium chloride (Cd) and nitric oxide (NO)-generating sodium nitroprusside (SNP). In brief, the results confirm that GS plays an important role in the defense of the human hepatoma cells against oxidative stress by reducing apoptosis and maintaining redox homeostasis.

This paper was first published online on Early Online on 16 June 2011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.