333
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Formation of radicals during heating lysine and glucose in solution with an intermediate water activity

, , , &
Pages 643-650 | Received 13 Mar 2013, Accepted 03 Jun 2013, Published online: 28 Jun 2013
 

Abstract

Heating glucose with lysine under alkaline conditions (pH 7.0–10.0) was found to take place with consumption of oxygen together with formation of brown-colored compounds. Highly reactive intermediary radicals were detected when lysine and glucose were heated at intermediate water activity at pH 7.0 and 8.0. The detection was based on initial trapping of highly reactive radicals by ethanol followed by spin trapping of 1-hydroxyethylradicals with α-(4-pyridyl N-oxide)-N-tert-butylnitrone (POBN) and Electron Spin Resonance (ESR) spectroscopy. The generation of reactive intermediary radicals from the Maillard reactions was favored by enhancing alkaline conditions (pH 8.0) and stimulated by presence of the transition metal ion Fe2+. The stability of the nitrone spin traps, N-tert-butyl-α-phenylnitrone and POBN was examined in buffered aqueous solutions within the pH range 1–12, and found to be less temperature dependent at acidic pH compared to alkaline conditions. A low rate (kobs) of hydrolysis of POBN was found at the used experimental conditions of 70°C and pH 7.0 and 8.0, which made this spin trap method suitable for the detection of radicals in the Maillard reaction system.

Acknowledgment

This work is carried out as a part of the research program of the UNIK: Food, Fitness & Pharma for Health and Disease (see www.foodfitnesspharma.ku.dk). The UNIK project is supported by the Danish Ministry of Science, Technology and Innovation.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.