579
Views
18
CrossRef citations to date
0
Altmetric
Original Article

Lipocalin 2 attenuates iron-related oxidative stress and prolongs the survival of ovarian clear cell carcinoma cells by up-regulating the CD44 variant

, , , , , , , & show all
Pages 414-425 | Received 23 Jul 2015, Accepted 15 Dec 2015, Published online: 12 Feb 2016
 

ABSTRACT

Ovarian clear cell carcinoma (CCC) arises from ovarian endometriosis. Intra-cystic fluid contains abundant amounts of free iron, which causes persistent oxidative stress, a factor that has been suggested to induce malignant transformation. However, the mechanisms linking oxidative stress and carcinogenesis in CCC currently remain unclear. Lipocalin 2 (LCN2), a multifunctional secretory protein, functions as an iron transporter as well as an antioxidant. Therefore, we herein examined the roles of LCN2 in the regulation of intracellular iron concentrations, oxidative stress, DNA damage, and antioxidative functions using LCN2-overexpressing (ES2), and LCN2-silenced (RMG-1) CCC cell lines. The results of calcein staining indicated that the up-regulated expression of LCN2 correlated with increases in intracellular iron concentrations. However, a DCFH-DA assay and 8OHdG staining revealed that LCN2 reduced intracellular levels of reactive oxygen species and DNA damage. Furthermore, the expression of LCN2 suppressed hydrogen peroxide-induced apoptosis and prolonged cell survival, suggesting an antioxidative role for LCN2. The expression of mRNAs and proteins for various oxidative stress-catalyzing enzymes, such as heme oxygenase (HO), superoxide dismutase (SOD), and glutathione peroxidase, was not affected by LCN2, whereas the intracellular concentration of the potent antioxidant, glutathione (GSH), was increased by LCN2. Furthermore, the expression of xCT, a cystine transporter protein, and CD44 variant 8-10 (CD44v), a stem cell marker, was up-regulated by LCN2. Although LCN2 increased intracellular iron concentrations, LCN2-induced GSH may catalyze and override oxidative stress via CD44v and xCT, and subsequently enhance the survival of CCC cells in oxidative stress-rich endometriosis.

Disclosure statement

The authors declare that there are no conflicts of interest.

Funding information

This work was supported by JSPS KAKENHI (Grant Number 25861484).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.