53
Views
62
CrossRef citations to date
0
Altmetric
Original Article

Inability of Chemically Generated Singlet Oxygen to Break the DNA Backbone

, , , , &
Pages 1-9 | Received 13 Feb 1985, Published online: 07 Jul 2009
 

Abstract

The capacity of a photodynamic and a chemical source of singlet molecular oxygen to cause DNA strand breakage at pH 7.8 was compared in the following systems: (1) dissolved rose bengal plus light (400–660 nm), (2) a novel water-soluble naphthalene-derived endoperoxide showing temperature-dependent singlet oxygen release, in the absence of light. Covalently closed circular DNA was efficiently converted to the open (relaxed) form upon exposure to dissolved rose bengal plus light in a time-dependent reaction, showing that this system was capable of causing DNA strand breakage at pH 7.8. The reaction was greatly reduced under hypoxic conditions (< 5 p.p.m. O2), was stimulated when using D2O instead of H2O as a solvent and was not inhibitable by superoxide dismutase, indicating that singlet oxygen was a critical intermediate. However, comparatively large fluxes of singlet oxygen generated by the endoperoxide completely failed to produce DNA strand breaks. We conclude that, although singlet oxygen seems to play a role in DNA strand breakage by rose bengal plus light, singlet oxygen per se is very inefficient if not completely incapable of causing DNA strand breakage.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.