4
Views
12
CrossRef citations to date
0
Altmetric
Original Article

The Superoxide Dismutase-Like Activity of Some Copper (II) Complexes Derived from Tridentate Schiff Bases

, , &
Pages 195-204 | Published online: 07 Jul 2009
 

Abstract

Oxygen free radicals are the final or intermediate products of many metabolic reactions. Of greatest significance to the organism are superoxide anion radical (O2-), hydrogen peroxide (H2O2), hydroxyl radical (OH). singlet oxygen (lO2) etc. A proper ratio between both production and breakdown of oxy-radicals is essential for the maintenance of a dynamic equilibrium of vital processes. The superoxide dismutases protect cells against toxic influence of the superoxide. In addition, some square-pyramidally pentacoordinated copper(II) complexes, derived from tridentate Schiff bases of the N-salicylideneaminoal-canoate type, show remarkable SOD-like activity. A selected set of complexes of this type have been tested: potassium [aqua-(N-salicylideneglutamato) cuprate] (L-and D,L-form). potassium [(isothiocyanato)-(N-salicylideneglycinato) cuprate], potassium [(isothiocyanato)-(N-salicylidene-D,L-alaninato) cuprate]. potassium ((isothiocyanato)-(N-salicylidene-β-alaninato) cuprate] and potassium [(isocyanate)-(N-salicylideneglycinato) cuprate]. Our results suggest that the copper complexes are not only antioxidants, but may also possess anti-inflammatory, cytostatic and radioprotective properties.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.