15
Views
5
CrossRef citations to date
0
Altmetric
Original Article

In Vivo Metal Substitution in Bacteroides Fragilis Superoxide Dismutase

&
Pages 313-318 | Published online: 07 Jul 2009
 

Abstract

Bacteroides fragilis. an obligate anaerobe, synthesizes an azide-inhibitable iron-containing superoxide dismutase when grown in complex medium. Cells grown anaerobically in complex media containing dcsferrioxamine (DesferalTM, Ciba-Geigy) and graded concentrations of Mn synthesize the azide-resistant manganese-containing SOD. The fraction of MnSOD activity in dialyzed cell extracts increased prograsively as the Mn concentration in the medium increased. The fraction of MnSOD activity also increased in extracts of cells grown in the medium with I mM Mn but with graded concentrations of desferrioxamine (0–10 micromolar). The SOD activity in the cells grown under the various conditions varied but not in a causal relationship with either Mn or desferrioxamine concentration. Electrophoresis reveaicd that the SOD activity in cells grown in the absence or presence of I mM Mn migrated with the same relative mobility and exhibited identical activity patterns when examined separately or as a mixture. These data are consistent with substitution of Mn for Fe in the B. fragilis apoprotein under anaerobic conditions and support the model of a single protein binding either Fe or Mn.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.