6
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Hydroxyl Radical-Induced Reactions in Polyadenylic Acid as Studied by Pulse Radiolysis: Part I. Transformation Reactions of Two Isomeric OH-Adducts

, &
Pages 391-400 | Received 11 Dec 1991, Accepted 20 Mar 1992, Published online: 07 Jul 2009
 

Abstract

The absorption spectra of polyadenylic acid (polyA) radicals in N20 saturated aqueous solution have been measured as a function of time (up to 15 s) following an 0.4μS electron pulse. The spectra and their changes were analysed by comparison with those from monomeric adenine derivatives (nucleosides and nucleotides) which had been studied by Steenken.1

The reaction of OH· radicals with the adenine moiety in poly A results in the formation of two hvdroxvl adducts at the positions C-4 [polyA40H·] and C-8 [polyA80H·]. Each OH-adduct undergoes a unimol-ecular transformation reaction before any bimolecular or other unimolecular decay occurs. These reactions are characterized by different rate constants and pH dependencies. The polyA40H· adduct undergoes a dehydration reaction to yield a neutral N6 centered radical (rate constant Kdeh= 1.4 × 104s-1 at pH7.3). This reaction is strongly inhibited by H+. In comparison with the analogous reactions in adenosine phosphates, the kinetic pK value for its inhibition is two pH units higher. This shift is the result of the counter ion condensation or double-strand formation. The polyA80H· adduct undergoes an imidazole ring opening reaction to yield an enol type of formamidopyrimidine radical with the resulting base damage (kr.o. = 3.5 × 104 s -1 at pH7.3). This reaction in contrast is strongly catalysed by H+and OH-, similar as for adenosine but different compared to the nucleotides.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.