43
Views
36
CrossRef citations to date
0
Altmetric
Original Article

Detection of Free Radicals by Microdialysis/Spin Trapping Epr Following Focal Cerebral Ischemia-Reperfusion and a Cautionary Note on the Stability of 5,5-Dimethyl-1-Pyrroline N-Oxide (DMPO)

, , , &
Pages 27-32 | Received 21 Jan 1994, Published online: 07 Jul 2009
 

Abstract

We have examined free radical production in a rat model of focal cerebral ischemia using microdialysis coupled with EPR analysis. A microdialysis probe was inserted 2 mm into the cerebral cortex, supplied by the right middle cerebral artery (MCA), and after a 2-hour washout period with artificial cerebral spinal fluid (ACSF), the perfusate solution was changed to ACSF containing the spin trapping agent, 5,5-dimethyl-1-pyrroline N-oxide (DMPO). No free radicals were detected by DMPO during the pre-ischemia period. Both common carotid arteries and the right MCA were then ligated for 90 minutes. Microdialysate collected every 15 min during the ischemic period demonstrated predominantly superoxide or peroxyl radical production. After release of the occlusive sutures, hydroxyl radical became apparent initially, then thiyl and carbon centered radicals appeared later in samples collected every 15 min for two hours following cortical reperfusion. Careful studies on the purification and stability of DMPO solution were performed to circumvent artifacts and spurious signals.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.