22
Views
5
CrossRef citations to date
0
Altmetric
Original Article

DNA Single Strand Breaks by Aromatic Nitroso Compounds in the Presence of Thiols

, &
Pages 409-418 | Received 13 Jan 1997, Published online: 07 Jul 2009
 

Abstract

Aromatic nitroso compounds, nitrosobenzene (NB), N, N-dimethyl-4-nitrosoaniline (DMNA) and 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS), caused DNA single strand breaks in the presence of thiol compounds. The strand breaking was inhibited completely by free radical scavenger ethanol. Electron spin resonance (ESR) studies showed that hydronitroxyl (or sulfur-substituted nitroxyl) radicals were generated in the early stage of the interactions. Formation of these radicals was not inhibited by ethanol, indicating that these radicals did not directly contribute to the strand breaking. The DNA strand breaking was inhibited partially by superoxide dismutase and catalase under the limited conditions, but not by removal of oxygen from or addition of metal chelators to the reaction mixture. By ESR-spin trapping technique using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), the DMPO-OH spin adduct was detected. Formation of the spin adduct was inhibited by superoxide dismutase and catalase. The hydronitroxyl (or the sulfur-substituted nitroxyl) radicals may reduce oxygen into active oxygen species and also transformed by themselves into other unidentified free radical species to cause the DNA strand breaks.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.