133
Views
28
CrossRef citations to date
0
Altmetric
Original Article

The Antioxidant Trolox Enhances the Oxidation of 2′, 7′-Dichlorofluorescin to 2′, 7′-Dichlorofluorescein

, &
Pages 37-47 | Received 25 Mar 1996, Published online: 07 Jul 2009
 

Abstract

The use of antioxidants to prevent intracellular free radical damage is an area currently attracting considerable research interest. The compound 2′,7′-dichlorofluorescin diacetate (DCFH-DA) is a probe for intracellular peroxide formation commonly used in such studies. During our studies we unexpectedly found that incubation of Trolox, a water soluble vitamin E analog, with DCFH-DA in cell-free physiological buffers resulted in the deacetylation and oxidation of DCFH-DA to form the fluorescent compound, 2′,7′-dichlorofluororescein (DCF). The reaction was time-, temperature-, and pH-dependent. Fluorescence intensity increased with an increase in either Trolox or DCFH-DA concentration. These results indicate that even at physiological pH, DCFH-DA can be deacetylated to form 2′,7′-dichlorofluorescin (DCFH). DCFH can then be oxidized to DCF by abstraction of a hydrogen atom by the phenoxyl radical of Trolox. Exposure of the reaction mixture to 10 Gy of 60Co gamma radiation greatly increased production of DCF. Antioxidant compounds reported to “repair” the Trolox phenoxyl radical (e.g., ascorbic acid, salicylate) can also prevent the Trolox-induced DCFH-DA fluorescence. However, compounds that cannot repair the Trolox phenoxyl radical (e.g., catechin) or can themselves form a radical (e.g., uric acid, TEMPOL) either have no effect or can increase levels of DCF. These results demonstrate that experimental design must be carefully considered when using DCFH-DA to measure peroxide formation in combination with certain antioxidants.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.