67
Views
68
CrossRef citations to date
0
Altmetric
Original Article

Peroxynitrite-Dependent Aromatic Hydroxylation and Nitration of Salicylate and Phenylalanine. Is Hydroxyl Radical Involved?

, &
Pages 71-82 | Received 01 May 1996, Published online: 07 Jul 2009
 

Abstract

There is considerable dispute about whether the hydroxylating ability of peroxynitrite (ONOO-)-derived species involves hydroxyl radicals (OH*). This was investigated by using salicylate and phenylalanine, attack of OH* upon which leads to the formation of 2, 3– and 2, 5-dihydroxybenzoates, and o-, m- and p-tyrosines respectively. On addition of ONOO- to salicylate, characteristic products of hydroxylation (and nitration) were observed in decreasing amounts with rise in pH, although added products of hydroxylation of salicylate were not recovered quantitatively at pH 8.5, suggesting further oxidation of these products and underestimation of hydroxylation at alkaline pH. Hydroxylation products decreased in the presence of several OH* scavengers, especially formate, to extents similar to those obtained when hydroxylation was achieved by a mixture of iron salts, H2O2 and ascorbate. However, OH* scavengers also inhibited formation of salicylate nitration products. Ortho, p- and m-tyrosines as well as nitration products were also observed when ONOO- was added to phenylalanine. The amounts of these products again decreased at high pH and were decreased by addition of OH* scavengers. We conclude that although comparison with Fenton systems suggests OH* formation, simple homolytic fission of peroxynitrous acid (ONOOH) to OH* and NO2 would not explain why OH* scavengers inhibit formation of nitration products.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.