123
Views
87
CrossRef citations to date
0
Altmetric
Original Article

Flavonoid Deactivation of Ferrylmyoglobin in Relation to Ease of Oxidation as Determined by Cyclic Voltammetry

&
Pages 335-351 | Received 02 Oct 1997, Published online: 07 Jul 2009
 

Abstract

Fourteen flavonoid aglycones, and the flavonoid glyco-side rutin, with redox potentials ranging from 0.20 (myricetin) to 0.83 V (chrysin) vs. NHE, as determined by cyclic voltammetry at 23°C in aqueous 50 mM phosphate, ionic strength 0.16 (NaCI) with pH = 7.4 and compared with redox potentials determined for four cinnamic acid derivatives, were all found to reduce ferrylmyoglobin, MbFe(IV)=O, to metmyoglo-bin, MbFe(III). Reaction stoichiometry depends strongly on the number of hydroxyl groups in the flavonoid B-ring. All compounds with 3′,4′-dihydroxy substitution reduce 2 equivalents of MbFe(IV)=O, whereas naringenin, hesperitin and kaempferol, with one hydroxyl group in the B-ring, reduce with a one-to-one stoichiometry. As studied spectrophotometrically under pseudo-first-order conditions with flavonoids in excess, rutin and apigenin react with MbFe(IV)=O with very similar and moderately high activation enthalpies of ΔH‡298 = 69 ± 1kJ mol−1 and ΔH‡298 = 65 ± 3kJ mol-1, respectively, and with positive activation entropies of ΔH‡298 = 23 ± 4Jmol-1 K−1 and ΔS‡298 = 13 ± 9Jmol−1K-1, respectively, in agreement with outer-sphere electron transfer as rate determining. For the fifteen plant polyphenols only qualitative relations exist between redox potential and rate constants rather than a linear free energy relationship (r2 = 0.503), and especially the flavone apigenin was found more efficient as reducing agent. For the flava-nones, a linear relation (r2 = 0.971) indicate that, in the absence of a 2,3 double bond, removal of the 4–carbonyl group or addition of a 3–hydroxy group only has minor effect on reactivity. The flavonols are the most efficient reducing agents, effectively reducing MbFe(IV)=O to MbFe(III) and establishing a steady state distribution between the flavonol and MbFe(III) and oxymyoglobin, MbFe(II)O2. Oxidised flavonols reduces MbFe(III) to MbFe(II)02 very efficiently and much faster than the parent flavonol.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.