1,399
Views
33
CrossRef citations to date
0
Altmetric
Research Article

Colon-targeted celecoxib-loaded Eudragit® S100-coated poly-ϵ-caprolactone microparticles: Preparation, characterization and in vivo evaluation in rats

, , &
Pages 523-535 | Received 23 Jan 2011, Accepted 27 May 2011, Published online: 28 Jul 2011
 

Abstract

Context: Celecoxib suffers from low and variable bioavailability following oral administration of solutions or capsules. Recent studies proved that chemoprevention of colorectal cancer is possible with celecoxib.

Objective: This work aimed to tailor colon-targeted celecoxib-loaded microparticles using time-dependant and pH-dependant coats. Estimation of drug pharmacokinetics following oral administration to fasted rats was another goal.

Methods: A 23 factorial design was adopted to develop poly-ϵ-caprolactone (PCL) celecoxib-loaded microparticles (F1–F8). To minimize drug-percentages released before colon, another coat of Eudragit® S100 was applied. In vitro characterization of microparticles involved topography, determination of particle size and entrapment efficiency (EE %). Time for 50% drug release (t50%) and drug-percentages released after 2 hours (Q2h) and 4 hours (Q4h) were statistically compared. Estimation of drug pharmacokinetics following oral administration of double-coat microparticles (F10) was studied in rats.

Results: PCL-single-coat microparticles were spherical, discrete with a size range of 60.66 ± 4.21–277.20 ± 6.10 μm. Direct correlations were observed between surfactant concentration and EE%, Q2h and Q4h. The PCL M.wt. and drug: PCL ratio had positive influences on EE% and negative impacts on Q2h and Q4h. When compared to the best achieved PCL-single-coat microparticles (F2), the double-coat microparticles (F10) showed satisfactory drug protection; Q2h and Q4h were significantly (P < 0.01) decreased from 31.84 ± 1.98% and 54.72 ± 2.10% to 15.92 ± 1.78% and 26.93 ± 2.76%, respectively. When compared to celecoxib powder, F10 microparticles enhanced the bioavailability and extended the duration of drug-plasma concentration in rats.

Conclusion: The developed double-coat microparticles could be considered as a promising celecoxib extended-release colon-targeting system.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.