114
Views
10
CrossRef citations to date
0
Altmetric
Research Article

GRIPDB - G protein coupled Receptor Interaction Partners DataBase

, &
Pages 199-205 | Received 11 Jan 2011, Accepted 09 Feb 2011, Published online: 17 Mar 2011
 

Abstract

The G protein Coupled Receptor (GPCR) superfamily is one of the most important pharmaceutical targets. Studies of GPCRs have long been performed under the assumption that GPCRs function as monomers. However, recent studies have revealed that many GPCRs function as homo- and/or hetero-dimers or higher-order oligomeric molecular complexes. As a result, information about GPCR oligomerization is rapidly accumulating, although the molecular mechanisms of oligomerization are not fully understood. A comprehensive collection of information about oligomerization would accelerate investigations of the molecular mechanisms of GPCRs’ oligomerization and involvement in signaling. Hence, we have developed a database, G protein coupled Receptor Interaction Partners DataBase (GRIPDB), which provides information about GPCR oligomerization. The entries in the database are divided into two sections: (I) Experiment Information section and (II) Prediction Information section. The Experiment Information section contains (I-i) experimentally indentified GPCR oligomers and their annotations, and (I-ii) experimentally suggested interfaces for the oligomerization. Since the number of experimentally suggested interfaces is limited, the entries in the Prediction Information section have been introduced to provide information about the oligomerization interfaces predicted by our computational method. The experimentally suggested or computationally predicted interfaces are displayed by 3D graphics, using GPCRs with available coordinates. The information in the GRIPDB, especially that about the interfaces, is useful to investigate the molecular mechanisms of signal transduction via GPCR oligomerization. The GRIPDB is available on the web at the following URL: http://grip.cbrc.jp/GDB/index.html.

Acknowledgements

WN and KF were supported by the Japan-India Strategic International Cooperative Program of the Japan Science and Technology Agency (JST). HT was supported by a Grant-in-Aid for Scientific Research, from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Membrane Interface).

Declaration of interest

The authors declare no conflict of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.