307
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Enhanced proliferation and altered calcium handling in RGS2-deficient vascular smooth muscle cells

, , , , , , , , & show all
Pages 476-483 | Received 26 Mar 2014, Accepted 29 Apr 2014, Published online: 20 May 2014
 

Abstract

Context: Regulator of G-protein signaling-2 (RGS2) inhibits Gq-mediated regulation of Ca2+ signalling in vascular smooth muscle cells (VSMC). Objective: RGS2 knockout (RGS2KO) mice are hypertensive and show arteriolar remodeling. VSMC proliferation modulates intracellular Ca2+ concentration [Ca2+]i. RGS2 involvement in VSMC proliferation had not been examined. Methods: Thymidine incorporation and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) conversion assays measured cell proliferation. Fura-2 ratiometric imaging quantified [Ca2+]i before and after UTP and thapsigargin. [3H]-labeled inositol was used for phosphoinositide hydrolysis. Quantitative RT-PCR and confocal immunofluorescence of select Ca2+ transporters was performed in primary aortic VSMC. Results and discussion: Platelet-derived growth factor (PDGF) increased S-phase entry and proliferation in VSMC from RGS2KO mice to a greater extent than in VSMC from wild-type (WT) controls. Consistent with differential PDGF-induced changes in Ca2+ homeostasis, RGS2KO VSMC showed lower resting [Ca2+]i but higher thapsigargin-induced [Ca2+]i as compared with WT. RGS2KO VSMC expressed lower mRNA levels of plasma membrane Ca2+ ATPase-4 (PMCA4) and Na+ Ca2+ Exchanger (NCX), but higher levels of sarco-endoplasmic reticulum Ca2+ ATPase-2 (SERCA2). Western blot and immunofluorescence revealed similar differences in PMCA4 and SERCA2 protein, while levels of NCX protein were not reduced in RGS2KO VSMC. Consistent with decreased Ca2+ efflux activity, 45Ca-extrusion rates were lower in RGS2KO VSMC. These differences were reversed by the PMCA inhibitor La3+, but not by replacing extracellular Na+ with choline, implicating differences in the activity of PMCA and not NCX. Conclusion: RGS2-deficient VSMC exhibit higher rates of proliferation and coordinate plasticity of Ca2+-handling mechanisms in response to PDGF stimulation.

Acknowledgements

This work received technical support from the Cell Biology of Atherosclerosis Group at the University of Toronto and the Heart & Stroke/Richard Lewar Centre of Excellence (HSRLCE) in Cardiovascular Research.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.