445
Views
11
CrossRef citations to date
0
Altmetric
Review Article

Signaling pathways in anchoring junctions of epithelial cells: cell-to-cell and cell-to-extracellular matrix interactions

, &
Pages 67-75 | Received 03 Apr 2014, Accepted 02 Jun 2014, Published online: 14 Jul 2014
 

Abstract

Epithelial cells form the epithelium, one of the basic tissues of the human body. These cells present specializations from tissue to tissue, determining different structures and functions. Tissues formed by epithelial cells are characterized by the few extracellular matrix found between adjacent cells. In this way, to preserve tissue integrity, cells have to stick to each other and have to maintain a strict communication with the environment via cell junctions. Signal transduction is the main way of cell communication, being vital for the regulation of cell survival and proliferation. In cell junctions, this communication occurs through cell adhesion molecules that promote cell-to-cell and cell-to-extracellular matrix adhesion, as well as, enable the flow of information to the inside and to the outside of the cell. These molecules include integrins and cadherins, among others. The impairment of cell signaling in epithelial junctions has been involved in several pathological processes that underlie the development of, for example, colorectal cancer. Thus, epithelial cell signaling mediators have been explored as potential therapeutic targets and efforts have been made to achieve a deeper understanding of molecular events that occur at cell junctions. In this review, we address the current knowledge on the main signaling events that take place in anchoring junctions of epithelial cells, focusing both on cell-to-cell and cell-to-matrix interactions. To conclude, we explore some relevant consequences from epithelial cell signaling impairment and demonstrate that the molecular mediators of the pathways analyzed may be putative therapeutic targets.

Declaration of interest

The authors report no declarations of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.