7
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characterization of the Hepatic Glucagon Receptor

, &
Pages 247-265 | Published online: 26 Sep 2008
 

Abstract

The hepatic glucagon receptor was covalently labeled with [125I-Tyr10]-monoiodoglucagon by use of the heterobifunctional crosslinker hydroxysuccini-midyl-p-azidobenzoate and analyzed by SDS-gel electrophoresis. The autoradio-gram of the gel showed one band at Mr=63,000 that was sensitive to excess unlabeled glucagon and GTP. The labeled receptor was solubilized with Lubrol-PX and the hydrodynamic characteristics of the receptor were determined. The molecular parameters of the solubilized receptor are S20, w = 4.3 ± 0.1, Stokes radius = 6.3 ± 0.1 nm, frictional coefficient f/f° = 1.8 and a calculated Mr = 33,000 fragment, that retains guanine nucleotide sensitivity. Elastase treatment of vacant receptors results in a Mr = 24,000 fragment that binds hormone in a GTP-sensitive manner. The Mr = 24,000 fragment is contained within the Mr = 33,000 fragment. The Mr = 63,000 receptor upon treatment with endo-β-N-acetylglucosamine F for 4 h yields four fragments of apparent Mr = 61,000, 56,000, 51,000, and 45,000; 24 h treatment results in the accumulation of the last two fragments. Neither Mr = 33,000 and 24,000 fragment appear to be substrates for endo-β-N-acetylglucosaminidase F.

These data allow us to conclude that the hepatic glucagon receptor in the membrane is a dimer of ∼ 60,000 dalton hormone binding subunit which is a glycoprotein containing at least four N-linked glycans accounting for 18,000 daltons of its mass. Both the hormone binding function and the capacity for the interaction with the stimulatory regulator of adenylyl cyclase are contained within a fragment of only ∼ 21,000 daltons that does not contain any N-linked glycans.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.