151
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Modified Young's Modulus of Microcrystalline Cellulose Tablets and the Directed Continuum Percolation Model

&
Pages 13-19 | Received 02 Jan 1997, Accepted 02 Jul 1997, Published online: 27 Sep 2008
 

ABSTRACT

The purpose of this investigation was to analyze the modified Young's modulus of microcrystalline cellulose tablets at comparatively low relative densities, based on concepts of percolation theory. Tablets were prepared and tested using a Zwick 1478 universal testing instrument. For statistical evaluation a new method is introduced for power laws, which exhibits highly correlated model parameters. According to our results the model Leuenberger, Leu is consistent with an Effective Medium Approximation which exhibits an exponent equal to one far away from the percolation threshold. In addition, the results show that it is essential to evaluate the elastic behavior of tablets close to the percolation threshold. For the different types of MCC a critical exponent q = 3.95 ± 0.14 was obtained. This result is very essential, as it is in good agreement with the theoretically expected value of 3.9 from an elastic network (central force model). The proposed model describes the modified Young's modulus better than former model equations taking into account the relative density. Thus, the process during uniaxial compaction can be imagined as a directed continuum percolation and the relative density of compacts can be identified as a space-occupation probability density Φ yielding reasonable percolation thresholds.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.