1,445
Views
8
CrossRef citations to date
0
Altmetric
Research Article

The combination of antitumor drugs, exemestane and erlotinib, induced resistance mechanism in H358 and A549 non-small cell lung cancer (NSCLC) cell lines

, , , &
Pages 444-452 | Received 14 Jan 2013, Accepted 04 Sep 2013, Published online: 05 Nov 2013
 

Abstract

Context: Estrogens in non-small-cell lung cancer (NSCLC) are important, and their interaction with epidermal growth factor receptor (EGFR) might be crucial.

Objective: This study investigates the effect of exemestane, an aromatase inhibitor, and erlotinib, an EGFR inhibitor, on human NSCLC cell lines; H23, H358 and A549.

Materials and methods: A cell proliferation assay was used for measuring cell number, apoptosis assay for detecting apoptosis and necrosis and immunoblotting for beclin-1 and Bcl-2 proteins detection. An immunofluorescence assay was used for EGFR localization. A migration assay and zymography were used for cell motility and metalloproteinases (MMPs) expression, respectively.

Results: Exemestane, erlotinib or their combination decreased cell proliferation and increased apoptosis. Exemestane’s half maximal inhibitory concentration (IC50) was 50 μM for H23 and H358 cells and 20 μM for A549. The IC50 of erlotinib was 25 μM for all cell lines. Apoptosis increase induced by exemestane was 58.0 (H23), 186.3 (H358) and 34.7% (A549) and by erlotinib was 16.7 (H23), 65.3 (H358) and 66.3% (A549). A synergy effect was observed only in H23 cells. Noteworthy, the combination of exemestane and erlotinib decreased beclin-1 protein levels (32.3 ± 19.2%), an indicator of autophagy, in H23 cells. The combination of exemestane and erlotinib partially reversed the EGFR translocation to mitochondria and decreased MMP levels and migration.

Discussion and conclusions: The benefit from a dual targeting of aromatase and EGFR seems to be regulated by NSCLC cell content. The diverse responses of cells to agents might be influenced by the dominance of certain molecular pathways.

Acknowledgements

We would like to thank the Medical School, University of Patras, Greece, for providing us the Advanced Light Microscopy facility, EOGE Oncological Research Fund for financial support and Gregoris Iconomou, PhD, Quality of life Unit, Division of Oncology, University Hospital of Patras, Greece for linguistic editing.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.