1,107
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Cytotoxic effects of four Caryophyllaceae species extracts on macrophage cell lines

, , , , &
Pages 919-925 | Received 16 Apr 2012, Accepted 18 Nov 2013, Published online: 27 May 2014
 

Abstract

Context: Saponins have been reported to possess antitumor properties, to inhibit angiogenesis and to induce tumor apoptosis.

Objective: To test the possible cytotoxic effect of crude extracts from four Caryophyllaceae species including Gypsophila paniculata L., Gypsophila trichotoma Wend., Saponaria officinalis L., and Dianthus sylvestris Wulffen on cultured monocyte/macrophage cell lines.

Materials and methods: After acid hydrolysis of the methanol-aqueous extracts, two representative prosaponins of the Caryophyllaceae, gypsogenin 3-O-glucuronide and quillaic acid 3-O-glucuronide were purified using solid-phase extraction (SPE), then identified by ultra-performance liquid chromatography–electrospray/mass spectrometry (UPLC-ESI/MS). Cytotoxic activity of the crude extracts at concentrations ranging from 0.1 to 200 µg/ml was evaluated on rat alveolar macrophage NR8383 and human monocytic THP-1 cell lines. Apoptosis was determined by measuring caspase-3 activity.

Results: Quantitative analysis by reversed-phase high-performance liquid chromatography (RP-HPLC) revealed a high content of gypsogenin 3-O-glucuronide in Gypsophila species roots (0.52–1.13% dry weight). At a concentration ≥10 µg/ml of crude extracts, a significant reduction of NR8383 and THP-1 cell lines viability was evidenced using the Trypan blue exclusion test. D. sylvestris extract exhibited the highest toxicity against THP-1 cells. Caspase-3 activation was evidenced after 4 and 24 h incubation of macrophages with 100 µg/ml of S. officinalis and G. trichotoma extracts, indicating apoptosis induction.

Discussion and conclusion: Crude extracts from the assayed species revealed cytotoxic effects toward macrophage cell lines. In Gypsophila species, gypsogenin 3-O-glucuronide derivatives could be responsible for the observed cytotoxicity. Therefore, crude extract of Caryophyllaceae is worth investigating for the potential development of agents against cancer cells.

Acknowledgements

The authors thank Pr. A. Le Faou for English revisions.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.