57
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

No contribution of umbilical cord mesenchymal stromal cells to capillarization and venularization of hepatic sinusoids accompanied by hepatic differentiation in carbon tetrachloride-induced mouse liver fibrosis

, , , , , , , , , , , , , & show all
Pages 371-383 | Received 02 Sep 2009, Accepted 04 Jan 2010, Published online: 26 Feb 2010
 

Abstract

Background aims. The acceleration of capillarization and venularization of hepatic sinusoids after cell therapy would not be beneficial to restoration after liver disease. The goal was to observe the effects of umbilical cord (UC)-derived mesenchymal stromal cells (MSC) on liver microcirculation and their therapeutic potential in liver fibrosis. Methods. Human UC MSC labeled with or without CM-DIL were transplanted into NOD/SCID mice with carbon tetrachloride (CCl4)-induced chronic liver fibrosis models. Because of the high autofluorescence on the injured liver sections, we used immunohistochemistry, Western blot and reverse transcriptase–polymerase chain reaction (RT-PCR), but not immunofluorescence, in order to avoid false images under a confocal fluorescence microscope. Results. Human-specific alpha-fetoprotein and albumin mRNA and proteins were detected in CCl4-treated mouse livers receiving human UC MSC transplants. We only observed the gene expression of human-specific endothelial-like cells markers CD31 and KDR by RT-PCR, but not protein expression by immunohistochemistry, in UC MSC-transplanted mouse livers. Vascular endothelial growth factor (VEGF) expression in injured livers 4 weeks after UC MSC transplantation was higher than in normal livers. However, UC MSC injection did not increase significantly the vascular density labeled by CD31 and (vWF) in the injured livers of UC MSC-transplanted mice compared with non-transplanted mice after CCl4 treatment. In addition, liver function was partly improved after UC MSC transplantation. Conclusions. Human UC MSC can differentiate into hepatocyte-like cells but do not accelerate the capillarization and venularization of hepatic sinusoids, finally leading to the partial improvement of liver function in mice with CCl4-mediated chronic liver fibrosis.

Declaration of interest: All manuscript authors have no conflicts of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.