53
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Reversal of experimental diabetes in mice by transplantation of neo-islets generated from human amnion-derived mesenchymal stromal cells using immuno-isolatory macrocapsules

, , &
Pages 982-991 | Received 14 Dec 2009, Accepted 06 Jul 2010, Published online: 31 Aug 2010
 

Abstract

Background aims. The ethical and biologic limitations with current sources of stem cells have resulted in a quest to look for alternative sources of multipotent stem cells of human origin. Amniotic membrane is of interest as a source of cells for regenerative medicine because of its ease of availability, plasticity and inexhaustible source that does not violate the sanctity of independent life. Although researchers have shown the stem cell-like potential of human amniotic epithelial cells, the mesenchymal part of amnion has remained less explored. Methods. We established a long-term culture of mesenchymal-like stem cells derived from full-term human amniotic membrane and their differentiation into functional pancreatic lineage. Results. The amnion-derived mesenchymal-like stem cells expressed various mesenchymal markers and demonstrated multilineage differentiation capacity. We also observed that these cells could form islet-like clusters (ILC) on exposure to serum-free defined media containing specific growth factor and differentiating agents. Differentiated ILC showed expression of human insulin, glucagon and somatostatin by immunocytochemistry, while quantitative reverse transcription/real-time–polymerase chain reaction (qRT-PCR) data demonstrated the expression of insulin, glucagon, somatostatin, Ngn3 and Isl1. Moreover, encapsulation of the ILC in polyurethane-polyvinyl pyrrolidone macrocapsules and their subsequent transplantation in experimental diabetic mice resulted in restoration of normoglycemia, indicating their ability to respond to high glucose without immunorejection. Conclusions. Our results demonstrate that amnion-derived mesenchymal stromal cells can undergo islet neogenesis, indicating amnion as an alternative source of islets for cell replacement therapy in diabetes.

Acknowledgments

The authors wish to thank The Director, NCCS, for providing the necessary facilities and encouragement to carry out the present work. The financial support of the Department of Biotechnology, Government of India, is acknowledged. Thanks are also due to Dr Meeta Nakhare (Ratna Hospital, Pune) for providing human amnion samples and umbilical cord blood.

Disclosure of interest: The authors do not have any conflict of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.