122
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Isolation and characterization of equine amniotic fluid-derived multipotent stem cells

, , , &
Pages 341-349 | Received 29 Jun 2010, Accepted 26 Aug 2010, Published online: 22 Sep 2010
 

Abstract

Background aims. Amniotic fluid (AF) is a well-known source of stem cells. However, there have been no reports regarding equine AF stem cells. We have isolated equine AF-derived multipotent stem cells (MSC) (eAF-MSC) and show that these cells exhibit self-renewal ability and multilineage differentiation. Methods. AF was obtained from thoroughbred mares and mononuclear cells (MNC) were isolated by Ficoll–Paque density gradient. We measured the cumulative population doubling level (CPDL) and characterized the immunophenotype by flow cytometry. To investigate differentiation ability, a trilineage differentiation assay was conducted. Results. eAF-MSC could be isolated and the proliferation level was high. eAF-MSC presented typical MSC phenotypic markers, as determined by flow cytometry. Moreover, eAF-MSC showed a trilineage differentiation capability. Conclusions. Equine AF is a good source of MSC. Furthermore, eAF-MSC may be useful as a cell therapy application for horses.

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST, 2010-0020265).

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.