1,033
Views
7
CrossRef citations to date
0
Altmetric
Short Communication

Novel phenoxyalkylcarboxylic acid derivatives as hypolipidaemic agents

, , , &
Pages 311-318 | Received 17 Feb 2011, Accepted 16 May 2011, Published online: 15 Nov 2011
 

Abstract

Novel phenoxyalkylcarboxylic acid derivatives based on the natural scaffolds, flavonoids, or resveratrol were designed, synthesized, and evaluated for hypolipidaemic activity. Among the compounds, 30b lowered the triglycerides by 48.5% (P < 0.05) and total cholesterol by 44.2% (P < 0.05), respectively, and was more effective than the reference drug fenofibric acid in a Triton WR-1339-induced hyperlipidaemic mice model orally (300 mg/kg body weight). 30b also showed 59.4% triglycerides lowering in an alloxan-induced diabetic mice model orally (150 mg/kg body weight). Receptor docking studies revealed that compound 30b could interact with the amino acid residues in the ligand-binding domain essential for the activation of the PPARα. The results indicate that resveratrol should be a better scaffold to derive a new class of hypolipidaemic agents in comparison with a flavonoid scaffold.

Acknowledgement

The authors are grateful to management of Bo-hua Zhong Group for encouragement, and the analytical department for support.

Declaration of interest

The authors report no conflict of interest, and the authors alone are responsible for the content of this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.