5,934
Views
316
CrossRef citations to date
0
Altmetric
Review Article

An overview of the alpha-, beta- and gamma-carbonic anhydrases from Bacteria: can bacterial carbonic anhydrases shed new light on evolution of bacteria?

&
Pages 325-332 | Received 17 Mar 2014, Accepted 27 Mar 2014, Published online: 25 Apr 2014
 

Abstract

Carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes which catalyze a simple but physiologically crucial reaction in all life Domains, the carbon dioxide hydration to bicarbonate and protons: CO2 + H2O ⇔ + H+. These enzymes are involved in many physiologic processes, such as photosynthesis, respiration, CO2 transport, as well as metabolism of xenobiotics. Five different, genetically distinct CA families are known to date: the α-, β-, γ-, δ- and ζ-CAs. α-, β- and δ-CAs use Zn(II) ions at the active site, the γ-CAs are probably Fe(II) enzymes (but they are active also with bound Zn(II) or Co(II) ions), whereas the ζ-class uses Cd(II) or Zn(II) to perform the physiologic reaction catalysis. Bacteria encode for enzymes belonging to the α-, β-, and γ-CA classes. They contain zinc ion (Zn2+) in their active site, coordinated by three histidine residues and a water molecule/hydroxide ion (in the α and γ) or by two cysteine and one histidine residues (in the β class), with the fourth ligand being a water molecule/hydroxide ion. Here we propose that bacterial CAs can be used as markers for understanding the evolution and genetic variability of the Gram-positive and Gram-negative bacteria. We addressed several questions such as: (1) why are α-CAs present only in the genome of Gram-negative bacteria; (2) why are α-CAs not present in all Gram-negative bacteria; (3) why do Bacteria show an intricate pattern of CA gene expression; (4) what are the physiologic roles of such diverse CAs in these prokaryotes. We proposed possible answers to the previous questions. Moreover, we speculated on the evolution of the CA classes (α, β and γ) identified in the Gram-negative and -positive bacteria. Our main hypothesis is that from the ancestral Ur-CA, the γ-class arose first, followed by the β-class; the α-class CAs came last it is found only in the Gram-negative bacteria.

Declaration of interest

The authors declare no conflict of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.