722
Views
29
CrossRef citations to date
0
Altmetric
Short Communication

Dipotassium-trioxohydroxytetrafluorotriborate, K2[B3O3F4OH], is a potent inhibitor of human carbonic anhydrases

, , , &
Pages 341-344 | Received 02 Apr 2014, Accepted 23 Apr 2014, Published online: 18 Jun 2014
 

Abstract

The boron heterocyclic compound dipotassium-trioxohydroxytetrafluorotriborate (K2[B3O3F4OH]) was investigated as inhibitor of the zinc enzyme, carbonic anhydrase (CA, EC 4.2.1.1). Eleven human (h) CA isoforms, hCA I–IV, VA, VI, VII, IX and XII–XIV, were included in the investigations. The anion, similar to tetraborate or phenylboronic acid, inhibited most of them. hCA III was not inhibited by K2[B3O3F4OH], whereas hCA VA, hCA VI, hCA IX and hCA XIII were inhibited in the submillimolar range, with KIs of 0.31–0.63 mM. hCA I and II (cytosolic, widespread isoforms), hCA IV (membrane-bound isoform), hCA XII (tumor-associated, transmembrane) and hCA XIV (transmembrane) were much more effectively inhibited by this anion, with inhibition constants ranging from 25 to 93 µM. hCA VII, a cytosolic enzyme present in the brain and associated to oxidative stress, was very effectively inhibited by K2[B3O3F4OH], with a KI of 8.0 µM. We propose that K2[B3O3F4OH] binds to the metal ion from the enzyme active site, coordinating to the Zn(II) ion monodentately through its B-OH functionality. We hypothesize that some of the beneficial antitumor effects reported for K2[B3O3F4OH] may be due to the inhibition of CAs present in skin tumors.

Declaration of interest

The authors report no conflict of interest. This work was supported by two EU FP7 research grants (Metoxia and Dynano projects).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.