839
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, central nervous system activity and structure–activity relationship of N-substituted derivatives of 1-arylimidazolidyn-2-ylideneurea and products of their cyclization

, , , , , & show all
Pages 746-760 | Received 01 Jul 2014, Accepted 11 Sep 2014, Published online: 11 Feb 2015
 

Abstract

A series of 20 N-substituted derivatives of 1-arylimidazolidyn-2-ylideneurea and products of their cyclization was designed as compounds having double antinociceptive and serotoninergic activity. Ethyl {[(1-arylimidazolidin-2-ylidene)carbamoyl]amino}acetates were prepared from 1-aryl-4,5-dihydro-1H-imidazol-2-amines and ethyl isocyanatoacetate, and then converted with ammonia solution to 2-{[(1-phenylimidazolidin-2-ylidene)carbamoyl]amino}acetamides. Both series of N-substituted derivatives of 1-arylimidazolidyn-2-ylideneureas were subjected to cyclization to respective imidazo[1,2-a][1,3,5]triazines. Chain and cyclic compounds bearing ester moiety affected spontaneous locomotor activity, body temperature of mice as well as showed antinociceptive and serotoninergic activity. Interestingly, their antinociceptive activity was not reversed by naloxone, thus it is not mediated through the opioid system. Chain and cyclic compounds bearing amide moiety were devoid of central nervous system (CNS) activity which may be attributed to unfavorably low lipophilicity (connected with too high polar surface area and too small molecular volume) and poor blood–brain barrier permeation properties.

Acknowledgements

The article was developed using the equipment purchased within the project “The equipment of innovative laboratories doing research on new medicines used in the therapy of civilization and neoplastic diseases” within the Operational Program Development of Eastern Poland 2007–2013, Priority Axis I modern Economy, operations I.3 Innovation promotion.

Declaration of interest

The research was partially performed during the post-doctoral fellowship of Agnieszka A. Kaczor at University of Eastern Finland, Kuopio, Finland under Marie Curie fellowship. Part of the calculations was performed under a computational grant by Interdisciplinary Center for Mathematical and Computational Modelling (ICM), Warsaw, Poland, grant number G30-18 and under resources and licenses by CSC, Finland. The authors report no declarations of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.