590
Views
54
CrossRef citations to date
0
Altmetric
Research Article

The severity of hypoxic changes and oxidative DNA damage in the placenta of early-onset preeclamptic women and fetal growth restriction

, , , , , & show all
Pages 491-496 | Received 16 May 2012, Accepted 13 Sep 2012, Published online: 08 Nov 2012
 

Abstract

Objective: To investigate the relation between the severity of hypoxic changes and oxidative DNA damage in the placenta of early and late-onset preeclampic women and fetal growth restriction (FGR), serum parameters of oxidative stress, placental hypoxic change, and oxidative DNA damage were determined. Methods: We examined 10 participants with uncomplicated pregnancies, 13 with early-onset and 12 with late-onset preeclampsia. Maternal and umbilical plasma derivatives of reactive oxygen metabolites (d-ROMs) were measured as markers of oxygen free radicals. Immunohistochemical analysis was performed to measure the proportion of placental trophoblast cell nuclei staining positive for 8-hydroxy-2’-deoxyguanosine (8-OHdG), redox factor-1 (ref-1), and hypoxia-induced factor-1α (HIF-1α), which are markers of oxidative DNA damage, repair functions, and hypoxia status, respectively. Results: 8-OHdG was higher in both preeclamptic groups, but significantly higher in the early-onset preeclamptic group. Ref-1 was higher in the late-onset preeclamptic group. HIF-1α was higher in both preeclamptic groups, with a tendency towards a higher in the early-onset preeclamptic group. Conclusions: Our findings indicate that the severity of hypoxic changes and oxidative DNA damage are greater in the placenta of women with early-onset preeclampsia, and that the prolonged preeclamptic conditions may reduce placental blood flow, ultimately leading to FGR.

Declaration of Interest: The authors report no conflicts of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.