79
Views
5
CrossRef citations to date
0
Altmetric
Original Article

Cx26 Affects the in Vitro Reconstruction of Human Epidermis

, &
Pages 409-413 | Received 01 Sep 2001, Accepted 15 Sep 2001, Published online: 11 Jul 2009
 

Abstract

To study the function of connexins in human keratinocytes, we have used a three-dimensional culture system, in which a tissue is reconstructed using cells from the outer root sheet of hair follicles. This tissue reproduces in vitro the histological organisation of human epidermis in situ and the normal distribution of several keratinocyte markers. Furthermore, it shows characteristics of a differentiating epidermis, including the expression of connexin26. Connexin26 protein expression is increased under physiological and pathological conditions resulting in increased keratinocyte turnover. Loss of this protein in keratinocytes, obtained from patients carrying a stop mutation, resulted in a reduced stratification of the in vitro reconstructed tissue, probably due to a lower proliferation and migration capacity of the keratinocytes, although dye coupling and persistence of other gap junctions is maintained. No changes were seen in tissues reconstructed with keratinocytes from patients carrying a non stop mutation of connexin30. The data indicate that, at least in vitro, connexin26 affects the function of human keratinocytes, independently of obvious changes in coupling.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.