808
Views
29
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Is neurogenesis relevant in depression and in the mechanism of antidepressant drug action? A critical review

, &
Pages 402-412 | Received 01 Feb 2011, Accepted 04 Oct 2011, Published online: 19 Dec 2011
 

Abstract

Objectives. Major depression is a complex disorder that involves genetic, epigenetic and environmental factors in its aetiology. Recent research has suggested that hippocampal neurogenesis may play a role in antidepressant action. However, careful examination of the literature suggests that the complex biological and psychological changes associated with depression cannot be attributed to disturbance in hippocampal neurogenesis alone. While antidepressants may induce hippocampal neurogenesis in non-human primates, there is a paucity of evidence that such effects are sufficient for full therapeutic action in humans. Methods. This review examines the literature on neurogenesis and discusses the stress-induced cortisol neurotoxicity and antidepressant-induced neurogenesis rescue model of depression. The disparity between a simple antidepressant-induced neurogenesis rescue model in the hippocampus and the complexity of clinical depression is analyzed through critical evaluation of recent research data. Results and conclusions. Major depression is a complex brain disorder with multiple symptoms and disturbances reflecting dysfunction in more than one single brain area. Initial research suggesting a model of hippocampal degeneration as basis of depression, and reversal by antidepressants through neurogenesis seems to be over-simplified given the emergence of new data. Synaptogenesis and re-organization or re-integration of new neurons rather than simple addition of new neurons may underlie the role of antidepressant drugs in the reversal of some but not all symptoms in depression. The importance of the neurogenesis hypothesis of depression and antidepressant action lies in stimulating further research into the possible roles played by the new neurons and synapses generated.

Acknowledgements

None.

Statement of Interest

No funding received for the study. Professor Tang has received travel support and grants from Lundbeck, Eli Lilly and Otsuka.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.