1,146
Views
201
CrossRef citations to date
0
Altmetric
Research Article

Stable nanoparticle aggregates/agglomerates of different sizes and the effect of their size on hemolytic cytotoxicity

, , , &
Pages 517-530 | Received 04 Aug 2010, Accepted 28 Oct 2010, Published online: 13 Dec 2010
 

Abstract

To study the toxicity of nanoparticles under relevant conditions, it is critical to disperse nanoparticles reproducibly in different agglomeration states in aqueous solutions compatible with cell-based assays. Here, we disperse gold, silver, cerium oxide, and positively-charged polystyrene nanoparticles in cell culture media, using the timing between mixing steps to control agglomerate size in otherwise identical media. These protein-stabilized dispersions are generally stable for at least two days, with mean agglomerate sizes of ∼23 nm silver nanoparticles ranging from 43–1400 nm and average relative standard deviations of less than 10%. Mixing rate, timing between mixing steps and nanoparticle concentration are shown to be critical for achieving reproducible dispersions. We characterize the size distributions of agglomerated nanoparticles by further developing dynamic light scattering theory and diffusion limited colloidal aggregation theory. These theories frequently affect the estimated size by a factor of two or more. Finally, we demonstrate the importance of controlling agglomeration by showing that large agglomerates of silver nanoparticles cause significantly less hemolytic toxicity than small agglomerates.

Declaration of interest: JMZ was funded by a National Research Council Postdoctoral Fellowship at NIST. MDH was supported in part by the National Science Foundation's Research Experience for Undergraduates (REU) program through the NIST Summer Undergraduate Research Fellowship (SURF) program. The authors report no conflict of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.