468
Views
46
CrossRef citations to date
0
Altmetric
Original Article

Cytotoxicity and morphological transforming potential of cobalt nanoparticles, microparticles and ions in Balb/3T3 mouse fibroblasts: an in vitro model

, , , , , , , , , , & show all
Pages 455-464 | Received 10 Dec 2012, Accepted 01 Apr 2013, Published online: 15 May 2013
 

Abstract

We previously described the behaviour of different cobalt forms, i.e., cobalt nanoparticles (CoNP), cobalt microparticles (CoMP) and cobalt ions (Co2+), in culture medium (dissolution, interaction with medium components, bioavailability) as well as their uptake and intracellular distribution in Balb/3T3 mouse fibroblasts (Sabbioni, Nanotoxicology, 2012). Here, we assess the cytotoxicity and morphological transformation of CoNP compared not only to Co2+, but also to CoMP and to released Co products. Cytotoxicity reached maximum at 4-h exposure, with ranking CoMP > CoNP > Co2+. However, if we consider toxicity as a function of intracellular Co, toxicity of the ionic forms seems to prevail over the particles. Co forms other than Co2+ released from particles had toxicity intermediate between particles and ions. Alterations in concentrations of essential elements (Cu, Mg, Zn) in cells exposed to Co particles may contribute to toxicity. Both CoMP and CoNP (but not Co2+ and other released Co forms) induced morphological transformation (CoMP > CoNP). This was dependent on reactive oxygen species production and lipid peroxidation, as indicated by inhibition of type III foci with ascorbic acid. The present results suggest that the previously demonstrated massive mitochondrial and nuclear Co internalisation and DNA adduct formation by CoMP and CoNP (Sabbioni, Nanotoxicology, 2012) induce toxicity and transformation. On the contrary, the role of ions released by particles in culture medium is negligible. Thus, both the chemical and the physical properties of Co particles contribute to cytotoxicity and morphological transformation.

Acknowledgements

R. Mariani-Costantini acknowledges support from Associazione Italiana Ricerca sul Cancro (AIRC), IG 9168 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.