881
Views
153
CrossRef citations to date
0
Altmetric
Original Article

Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity

, , , , , , & show all
Pages 181-189 | Received 29 Jan 2014, Accepted 18 Mar 2014, Published online: 16 Apr 2014
 

Abstract

Toxicity of silver nanoparticles (Ag NPs) has been reported both in vitro and in vivo. However, the intracellular stability and chemical state of Ag NPs are still not very well studied. In this work, we systematically investigated the cellular uptake pathways, intracellular dissolution and chemical species, and cytotoxicity of Ag NPs (15.9 ± 7.6 nm) in Chinese hamster ovary cell subclone K1 cells, a cell line recommended by the OECD for genotoxicity studies. Quantification of intracellular nanoparticle uptake and ion release was performed through inductively coupled plasma mass spectrometry. X-ray absorption near-edge structure (XANES) was employed to assess the chemical state of intracellular silver. The toxic potential of Ag NPs and Ag+ was evaluated by cell viability, reactive oxygen species (ROS) production and live–dead cell staining. The results suggest that cellular uptake of Ag NPs involves lipid-raft-mediated endocytosis and energy-independent diffusion. The degradation study shows that Ag NPs taken up into cells dissolved quickly and XANES results directly indicated that the internalized Ag was oxidized to Ag−O− species and then stabilized in silver−sulfur (Ag−S−) bonds within the cells. Subsequent cytotoxicity studies show that Ag NPs decrease cell viability and increase ROS production. Pre-incubation with N-acetyl-l-cysteine, an efficient antioxidant and Ag+ chelator, diminished the cytotoxicity caused by Ag NPs or Ag+ exposure. Our study suggests that the cytotoxicity mechanism of Ag NPs is related to the intracellular release of silver ions, followed by their binding to SH-groups, presumably coming from amino acids or proteins, and affecting protein functions and the antioxidant defense system of cells.

Acknowledgements

We appreciate Prof. Yuying Huang, Dr. Zheng Jiang and Dr. Lihua Wang for their help in the XANES experiment at SSRF.

Declaration of interest

The authors declare not to have any conflict of interest.

This work was supported by the Danish Council for Strategic Research grant (09-067185), the Ministry of Science and Technology of China (2011CB933401 and 2012CB934003) and the National Natural Science Foundation of China (11205166).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.