599
Views
40
CrossRef citations to date
0
Altmetric
Original Article

5-Day repeated inhalation and 28-day post-exposure study of graphene

, , , , , , , , , , , , & show all
Pages 1023-1031 | Received 11 Aug 2014, Accepted 09 Dec 2014, Published online: 20 Feb 2015
 

Abstract

Graphene has recently been attracting increasing attention due to its unique electronic and chemical properties and many potential applications in such fields as semiconductors, energy storage, flexible electronics, biosensors and medical imaging. However, the toxicity of graphene in the case of human exposure has not yet been clarified. Thus, a 5-day repeated inhalation toxicity study of graphene was conducted using a nose-only inhalation system for male Sprague-Dawley rats. A total of three groups (20 rats per group) were compared: (1) control (ambient air), (2) low concentration (0.68 ± 0.14 mg/m3 graphene) and (3) high concentration (3.86 ± 0.94 mg/m3 graphene). The rats were exposed to graphene for 6 h/day for 5 days, followed by recovery for 1, 3, 7 or 28 days. The bioaccumulation and macrophage ingestion of the graphene were evaluated in the rat lungs. The exposure to graphene did not change the body weights or organ weights of the rats after the 5-day exposure and during the recovery period. No statistically significant difference was observed in the levels of lactate dehydrogenase, protein and albumin between the exposed and control groups. However, graphene ingestion by alveolar macrophages was observed in the exposed groups. Therefore, these results suggest that the 5-day repeated exposure to graphene only had a minimal toxic effect at the concentrations and time points used in this study.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

This research was supported by the NanoMaterial Technology Development Program (Green Nano Technology Development Program) (2011-0020504) and Nano R&D Program (2011-0019171) through the National Research Foundation of Korea (NRF) funded by the Korean Ministry of Science, ICT and Future Planning.

Supplementary material available online

Supplementary data S1–S13

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.