3,548
Views
272
CrossRef citations to date
0
Altmetric
Research Article

The relationship between pH and zeta potential of ∼ 30 nm metal oxide nanoparticle suspensions relevant to in vitro toxicological evaluations

, , , &
Pages 276-283 | Received 30 Apr 2009, Accepted 19 Aug 2009, Published online: 30 Nov 2009
 

Abstract

Zeta potential measurements are common in nanotoxicology. This research probes the effects of pH and time on nanoparticle zeta potential, agglomerate size, and cellular viability. The nanoparticles TiO2, Fe2O3, Al2O3, ZnO, and CeO2, were titrated from pH 12.0–2.0. The isoelectric points (IEP) of the nanoparticles were near neutral with the exception of TiO2 (IEP = 5.19) and Fe2O3 (IEP = 4.24). Nanoparticle agglomerates were largest at the IEP. TiO2 and Fe2O3 increased in zeta potential and agglomerate size over time; while Al2O3 and ZnO displayed little change. CeO2 increased in zeta potential; however, the net charge remained negative. Cytotoxicity studies revealed that TiO2 and Fe2O3 caused decreasing cellular viability over 48 h. Al2O3, ZnO, and CeO2 cellular viability remained similar to control. Results indicate that alterations in the pH have a large effect on zeta potential and agglomerate size which may be used as a predictive measure of nanotoxicity.

Acknowledgments

The authors thank Dr Bing Guo of the Department of Mechanical Engineering at Texas A&M University for supplying the Fe2O3 nanoparticle samples. We also thank the Department of Veterinary Physiology and Pharmacology for supporting this work.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.