472
Views
155
CrossRef citations to date
0
Altmetric
Research Article

Copper nanoparticles exert size and concentration dependent toxicity on somatosensory neurons of rat

, , , &
Pages 150-160 | Received 20 Feb 2009, Accepted 14 Sep 2009, Published online: 18 Nov 2009
 

Abstract

Metal nanoparticles, due to their unique properties and important applications in optical, magnetic, thermal, electrical, sensor devices and cosmetics, are beginning to be widely manufactured and used. This new and rapidly growing field of technology warrants a thorough examination of the material's bio-compatibility and safety. Ultra-small particles may adversely affect living cells and organisms since they can easily penetrate the body through skin contact, inhalation and ingestion. Retrograde transport of copper nanoparticles from nerve endings on the skin can reach the somatosensory neurons in dorsal root ganglion (DRG). Since copper nanoparticles have industrial and healthcare applications, we determined the concentration and size-dependant effects of their exposure on survival of DRG neurons of rat in cell culture. The neurons were exposed to copper nanoparticles of increasing concentrations (10–100 μM) and sizes (40, 60 and 80 nm) for 24 h. Light microscopy, histochemical staining for copper, lactate dehydrogenase (LDH) assay for cell death, and MTS [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay for cell viability were performed to measure the resultant toxicity and cell survival. DRG neurons exposed to copper nanoparticles displayed vacuoles and detachment of some neurons from the substratum. Neurons also exhibited disrupted neurite network. LDH and MTS assays revealed that exposure to copper nanoparticles had significant toxic effect with all the sizes tested when compared to unexposed control cultures. Further analysis of the results showed that copper nanoparticles of smaller size and higher concentration exerted the maximum toxic effects. Rubeanic acid staining showed intracellular deposition of copper. These results demonstrate that copper nanoparticles are toxic in a size- and concentration-dependent manner to DRG neurons.

Acknowledgements

For this study we used items of equipment supported by NIH/NIDA grant # 1R15 DA19971; by NIH/NCRR grant # P20 RR-16460 from the IDeA Networks of Biomedical Research Excellence (INBRE) Program; and by Arkansas Bioscience Institute to M. Srivatsan. We thank Jonathan Treece and Justin Yancey for their help with culture set-up.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.