180
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Intramedullary spinal cord implantation of human CD34+ umbilical cord-derived cells in ALS

, , , , , , , , & show all
Pages 325-330 | Received 12 Jan 2011, Accepted 04 Apr 2011, Published online: 03 Aug 2011
 

Abstract

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder with marginal therapeutic options. Degeneration of motor neurons in the primary motor cortex, brainstem and spinal cord lead to rapidly progressive paralysis and finally to death due to respiratory failure. As pharmacological therapies have failed to provide sufficient neuroprotective effects in ALS, transplantation of stem or progenitor cells is considered a promising treatment strategy. Cell transplantation approaches in ALS mainly aim to generate a neuroprotective environment for degenerating motor neurons by transplantation of non-neuronal cells, rather than to replace lost motor neurons. We present a 63-year-old male patient suffering from ALS who underwent intramedullary thoracic spinal cord implantation of human CD34+ umbilical cord-derived haematopoietic progenitor cells with a three-year follow up after transplantation.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.