459
Views
13
CrossRef citations to date
0
Altmetric
ARTICLE

Flaxseed Protects Against Diabetes-Induced Glucotoxicity by Modulating Pentose Phosphate Pathway and Glutathione-Dependent Enzyme Activities in Rats

, , , , , & show all
 

ABSTRACT

This study investigated the effects of flaxseed (Linum usitatissimum L.) intake on general metabolism, pentose phosphate pathway (PPP) and glutathione-dependent enzymes in diabetic rats. Diabetes was induced by streptozotocin injection (40 mg/kg, i.p.) and the enzyme activities were determined spectrophotometrically. Diabetic and control rats were divided in two subgroups, one untreated, and one treated with flaxseed (0.714 g/kg body weight/day; orally) for 12 weeks. Flaxseed ameliorated decreased body weight (p < .05) and increased blood glucose (p < .001), triglyceride (p < .001), ALT (p < .001) and AST (p < .001) in diabetic rats. Diabetes resulted in increased glucose-6-phosphate dehydrogenase (G6PD) (p < .05) and decreased glutathione-S-transferase (GST) (p < .01), but unchanged 6-phosphogluconate dehydrogenase (6PGD) and glutathione reductase (GR) in the brain of rats. These alterations were partially improved by flaxseed in comparison to diabetic untreated group (p < .05). G6PD, 6PGD, GR were elevated (p < .001), while GST unchanged in the lung of diabetic untreated group compared to control. Flaxseed partially prevented the increase in 6PGD (p < .05) and GR (p < .01), but unaffected G6PD in the lung of diabetic rats. G6PD (p < .001), 6PGD (p < .05), GR (p < .001) were augmented, while GST showed a significant (p < .001) depletion in the pancreas of diabetic untreated rats compared to control. Diabetic alterations observed in pancreatic enzyme activities were significantly prevented by flaxseed. Furthermore, a remarkable decrease in 6PGD (p < .001) and an increase in G6PD (threefold of control) were found in the lens of diabetic untreated group that were completely prevented by flaxseed (p < .001). Flaxseed has beneficial effects against diabetes-induced glucotoxicity by modulating G6PD, 6PGD, GR and GST activities in tissues.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.