763
Views
28
CrossRef citations to date
0
Altmetric
Research Article

Local moderate magnetically induced hyperthermia using an implant formed in situ in a mouse tumor model

, , , , , , & show all
Pages 229-239 | Received 06 May 2008, Accepted 27 Dec 2008, Published online: 09 Jul 2009

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (6)

Xiaofei Zhuang, Yi Kang, Lingxia Zhao & Shiping Guo. (2022) Design and synthesis of copper nanoparticles for the treatment of human esophageal cancer: introducing a novel chemotherapeutic supplement. Journal of Experimental Nanoscience 17:1, pages 274-284.
Read now
Legha Ansari & Bizhan Malaekeh-Nikouei. (2017) Magnetic silica nanocomposites for magnetic hyperthermia applications. International Journal of Hyperthermia 33:3, pages 354-363.
Read now
Irene Andreu & Eva Natividad. (2013) Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia. International Journal of Hyperthermia 29:8, pages 739-751.
Read now
Xinying Wu, Yanbin Tan, Hui Mao & Minming Zhang. (2010) Toxic effects of iron oxide nanoparticles on human umbilical vein endothelial cells. International Journal of Nanomedicine 5, pages 385-399.
Read now
Dewei Jia & Jing Liu. (2010) Current devices for high-performance whole-body hyperthermia therapy. Expert Review of Medical Devices 7:3, pages 407-423.
Read now
Sophie Laurent, Jean-Luc Bridot, Luce Vander Elst & Robert N Muller. (2010) Magnetic Iron Oxide Nanoparticles for Biomedical Applications. Future Medicinal Chemistry 2:3, pages 427-449.
Read now

Articles from other publishers (22)

Marjan Shahriari, Sha Liu, Zahra Ebrahimi & Lingli Cao. (2022) A strategy for the treatment of lung carcinoma by in situ immobilization of Ag nanoparticles on the surface of Fe3O4 nanoparticles that modified by lignin. Inorganic Chemistry Communications 144, pages 109915.
Crossref
Anilkumar Thaghalli Shivanna, Banendu Sunder Dash & Jyh-Ping Chen. (2022) Functionalized Magnetic Nanoparticles for Alternating Magnetic Field- or Near Infrared Light-Induced Cancer Therapies. Micromachines 13:8, pages 1279.
Crossref
Antônia Millena de Oliveira Lima, Elizângela Hafemann Fragal, Bárbara Sthéfani Caldas, Tânia Ueda Nakamura, Adley Forti Rubira & Rafael Silva. (2022) Functional mesoporous silica decorated with Ag nanoparticles as chemo-photothermal agents. Microporous and Mesoporous Materials 341, pages 112097.
Crossref
Zhisheng Liu, Kai Wang, Tingting Wang, Ye Wang & Yunjie Ge. (2022) Copper nanoparticles supported on polyethylene glycol-modified magnetic Fe3O4 nanoparticles: Its anti-human gastric cancer investigation. Arabian Journal of Chemistry 15:1, pages 103523.
Crossref
Natalia E. Kazantseva, Ilona S. Smolkova, Vladimir Babayan, Jarmila Vilčáková, Petr Smolka & Petr Saha. (2021) Magnetic Nanomaterials for Arterial Embolization and Hyperthermia of Parenchymal Organs Tumors: A Review. Nanomaterials 11:12, pages 3402.
Crossref
Chenyang He, Yu Guo, Bikash Karmakar, Attalla El-kott, Ahmed Ezzat Ahmed & Ahmed Khames. (2021) Decorated silver nanoparticles on biodegradable magnetic chitosan/starch composite: Investigation of its cytotoxicity, antioxidant and anti-human breast cancer properties. Journal of Environmental Chemical Engineering 9:6, pages 106393.
Crossref
Vuk Uskoković. (2020) Earthicle and Its Discontents: A Historical Critical Review of Iron (Oxide) Particles Singly and Doubly Shelled with Silica and/or Carbon. ACS Earth and Space Chemistry 4:10, pages 1843-1877.
Crossref
Saleh S. Hayek. (2019) Synthesis and Characterization of CeGdZn-Ferrite Nanoparticles as Magnetic Hyperthermia Application Agents. Advances in Materials Science and Engineering 2019, pages 1-8.
Crossref
Daniel Crístian Ferreira Soares & Marli Luiza Tebaldi. 2019. Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications. Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications 111 129 .
Jung Kyung KimBibin PrasadSuzy Kim. Temperature mapping and thermal dose calculation in combined radiation therapy and 13.56 MHz radiofrequency hyperthermia for tumor treatment. Temperature mapping and thermal dose calculation in combined radiation therapy and 13.56 MHz radiofrequency hyperthermia for tumor treatment.
. 2016. Bio-Targets and Drug Delivery Approaches. Bio-Targets and Drug Delivery Approaches 375 395 .
Alexander Liberman, Natalie Mendez, William C. Trogler & Andrew C. Kummel. (2014) Synthesis and surface functionalization of silica nanoparticles for nanomedicine. Surface Science Reports 69:2-3, pages 132-158.
Crossref
Marianne Parent, Cécile Nouvel, Martin Koerber, Anne Sapin, Philippe Maincent & Ariane Boudier. (2013) PLGA in situ implants formed by phase inversion: Critical physicochemical parameters to modulate drug release. Journal of Controlled Release 172:1, pages 292-304.
Crossref
Sophie Laurent, Luce Vander Elst & Robert N. Muller. 2013. The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging. The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging 427 447 .
Ashley M. Hawkins, David A. Puleo & J. Zach Hilt. 2012. Responsive Membranes and Materials. Responsive Membranes and Materials 211 228 .
M. Mohamed, G. Borchard & O. Jordan. (2012) In situ forming implants for local chemotherapy and hyperthermia of bone tumors. Journal of Drug Delivery Science and Technology 22:5, pages 393-408.
Crossref
Sophie Laurent, Silvio Dutz, Urs O. Häfeli & Morteza Mahmoudi. (2011) Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Advances in Colloid and Interface Science 166:1-2, pages 8-23.
Crossref
Pol-Edern Le Renard, Rolf Lortz, Carmine Senatore, Jean-Philippe Rapin, Franz Buchegger, Alke Petri-Fink, Heinrich Hofmann, Eric Doelker & Olivier Jordan. (2011) Magnetic and in vitro heating properties of implants formed in situ from injectable formulations and containing superparamagnetic iron oxide nanoparticles (SPIONs) embedded in silica microparticles for magnetically induced local hyperthermia. Journal of Magnetism and Magnetic Materials 323:8, pages 1054-1063.
Crossref
Murali M. Yallapu, Shadi F. Othman, Evan T. Curtis, Brij K. Gupta, Meena Jaggi & Subhash C. Chauhan. (2011) Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy. Biomaterials 32:7, pages 1890-1905.
Crossref
O L Herrera, E Parigi, N Habibi, L Pastorino, Federico Caneva Soumetz & C Ruggiero. (2010) Development of nanostructured magnetic capsules by means of the layer by layer technique. Development of nanostructured magnetic capsules by means of the layer by layer technique.
Pol-Edern Le Renard, Olivier Jordan, Antonin Faes, Alke Petri-Fink, Heinrich Hofmann, Daniel Rüfenacht, Frederik Bosman, Franz Buchegger & Eric Doelker. (2010) The in vivo performance of magnetic particle-loaded injectable, in situ gelling, carriers for the delivery of local hyperthermia. Biomaterials 31:4, pages 691-705.
Crossref
Karynne C. Souza, Nelcy D. S. Mohallem & Edésia M. B. Sousa. (2009) Mesoporous silica-magnetite nanocomposite: facile synthesis route for application in hyperthermia. Journal of Sol-Gel Science and Technology 53:2, pages 418-427.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.