143
Views
42
CrossRef citations to date
0
Altmetric
Original Research

Development of targeted 1,2-diacyl-sn-glycero-3-phospho-l-serine-coated gelatin nanoparticles loaded with amphotericin B for improved in vitro and in vivo effect in leishmaniasis

, , , , , & show all

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (3)

Catarina de Souza, Janicy A. Carvalho, Alexandro S. Abreu, Lucas P. de Paiva, Jéssica A. R. Ambrósio, Milton Beltrame Junior, Marco A. de Oliveira, Josane Mittmann & Andreza R. Simioni. (2021) Polyelectrolytic gelatin nanoparticles as a drug delivery system for the promastigote form of Leishmania amazonensis treatment. Journal of Biomaterials Science, Polymer Edition 32:1, pages 1-21.
Read now
Juliane S. Lanza, Sébastien Pomel, Philippe M. Loiseau & Frédéric Frézard. (2019) Recent advances in amphotericin B delivery strategies for the treatment of leishmaniases. Expert Opinion on Drug Delivery 16:10, pages 1063-1079.
Read now
Shyam Sundar, Neha Agrawal & Bhawana Singh. (2019) Exploiting knowledge on pharmacodynamics-pharmacokinetics for accelerated anti-leishmanial drug discovery/development. Expert Opinion on Drug Metabolism & Toxicology 15:7, pages 595-612.
Read now

Articles from other publishers (39)

Shabi Parvez, Ganesh Yadagiri, Kanika Arora, Aaqib Javaid, Anurag Kumar Kushwaha, Om Prakash Singh, Shyam Sundar & Shyam Lal Mudavath. (2021) Coalition of Biological Agent (Melatonin) With Chemotherapeutic Agent (Amphotericin B) for Combating Visceral Leishmaniasis via Oral Administration of Modified Solid Lipid Nanoparticles. ACS Biomaterials Science & Engineering 9:6, pages 2902-2910.
Crossref
Deepak Gupta, Pankaj K. Singh, Pavan K. Yadav, Tadigoppula Narender, Umesh K. Patil, Sanjay K. Jain & Manish K. Chourasia. (2023) Emerging strategies and challenges of molecular therapeutics in antileishmanial drug development. International Immunopharmacology 115, pages 109649.
Crossref
Zahra Abpeikar, Mohsen Safaei, Ali Akbar Alizadeh, Arash Goodarzi & Gholamreza Hatam. (2023) The novel treatments based on tissue engineering, cell therapy and nanotechnology for cutaneous leishmaniasis. International Journal of Pharmaceutics 633, pages 122615.
Crossref
Natália Silva de Santana, Luciana Betzler de Oliveira de Siqueira, Tatielle do Nascimento, Ralph Santos-Oliveira, Ana Paula dos Santos Matos & Eduardo Ricci-Júnior. (2023) Nanoparticles for the treatment of visceral leishmaniasis: review. Journal of Nanoparticle Research 25:2.
Crossref
Santanu Ghosh, Nabanita Kar & Mousumi Das. 2023. Viral, Parasitic, Bacterial, and Fungal Infections. Viral, Parasitic, Bacterial, and Fungal Infections 449 465 .
Sana Ayari-Riabi, Noureddine Ben khalaf, Balkiss Bouhaouala-Zahar, Bernard Verrier, Thomas Trimaille, Zakaria Benlasfar, Mehdi Chenik & Mohamed Elayeb. (2022) Polylactide Nanoparticles as a Biodegradable Vaccine Adjuvant: A Study on Safety, Protective Immunity and Efficacy against Human Leishmaniasis Caused by Leishmania Major. Molecules 27:24, pages 8677.
Crossref
Carlos J. Bethencourt-Estrella, Samuel Delgado-Hernández, Atteneri López-Arencibia, Desirée San Nicolás-Hernández, David Tejedor, Fernando García-Tellado, Jacob Lorenzo-Morales & José E. Piñero. (2022) In vitro activity and cell death mechanism induced by acrylonitrile derivatives against Leishmania amazonensis. Bioorganic Chemistry 124, pages 105872.
Crossref
Chinaza Godswill Awuchi, Mohammad Akram, Ifeanyi Clifford Owuamanam, Chika C. Ogueke, Chibueze Gospel Awuchi & Hannington Twinomhwezi. 2022. Applications of Nanotechnology in Drug Discovery and Delivery. Applications of Nanotechnology in Drug Discovery and Delivery 205 238 .
Alazne Moreno-Lanceta, Mireia Medrano-Bosch, Elazer R. Edelman & Pedro Melgar-Lesmes. 2022. Pharmaceutical Nanobiotechnology for Targeted Therapy. Pharmaceutical Nanobiotechnology for Targeted Therapy 561 608 .
Neelu Singh, Priyanka Maurya, Nidhi Mishra, Samipta Singh, Ravi Raj Pal, Priya Singh, Poonam Parashar, Alka Sonkar & Shubhini A. Saraf. 2022. Macrophage Targeted Delivery Systems. Macrophage Targeted Delivery Systems 169 187 .
Pragya Prasanna, Prakash Kumar, Saurabh Kumar, Vinod Kumar Rajana, Vishnu Kant, Surendra Rajit Prasad, Utpal Mohan, V. Ravichandiran & Debabrata Mandal. (2021) Current status of nanoscale drug delivery and the future of nano-vaccine development for leishmaniasis – A review. Biomedicine & Pharmacotherapy 141, pages 111920.
Crossref
Olga Kammona & Evgenia Tsanaktsidou. (2021) Nanotechnology-aided diagnosis, treatment and prevention of leishmaniasis. International Journal of Pharmaceutics 605, pages 120761.
Crossref
Rinez Thapa, Subhasish Mondal, Joakim Riikonen, Jimi Rantanen, Simo Näkki, Tuomo Nissinen, Ale Närvänen & Vesa-Pekka Lehto. (2021) Biogenic nanoporous silicon carrier improves the efficacy of buparvaquone against resistant visceral leishmaniasis. PLOS Neglected Tropical Diseases 15:6, pages e0009533.
Crossref
Mahboobeh Jafari, Samira Sadat Abolmaali, Ali Mohammad Tamaddon, Kamiar Zomorodian & Bahador Shahriarirad (Sarkari). (2021) Nanotechnology approaches for delivery and targeting of Amphotericin B in fungal and parasitic diseases. Nanomedicine 16:10, pages 857-877.
Crossref
Simone Santiago de Carvalho Oliveira, Marta Helena Branquinha, Maria do Socorro Pires e Cruz, André Luis Souza dos Santos & Leandro Stefano Sangenito. 2021. Applications of Nanobiotechnology for Neglected Tropical Diseases. Applications of Nanobiotechnology for Neglected Tropical Diseases 291 327 .
Poonam Parashar, Pranesh Kumar, Anurag Kumar Gautam, Neelu Singh, Hriday Bera, Srimanta Sarkar, Shubhini A. Saraf & Sudipta Saha. 2021. Biopolymer-Based Nanomaterials in Drug Delivery and Biomedical Applications. Biopolymer-Based Nanomaterials in Drug Delivery and Biomedical Applications 407 426 .
Shabi Parvez, Ganesh Yadagiri, Archana Karole, Om Prakash Singh, Anurag Verma, Shyam Sundar & Shyam Lal Mudavath. (2020) Recuperating Biopharmaceutical Aspects of Amphotericin B and Paromomycin Using a Chitosan Functionalized Nanocarrier via Oral Route for Enhanced Anti-leishmanial Activity. Frontiers in Cellular and Infection Microbiology 10.
Crossref
Shabi Parvez, Ganesh Yadagiri, Aakriti Singh, Archana Karole, Om Prakash Singh, Shyam Sundar & Shyam Lal Mudavath. (2020) Improvising anti-leishmanial activity of amphotericin B and paromomycin using co-delivery in d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) tailored nano-lipid carrier system. Chemistry and Physics of Lipids 231, pages 104946.
Crossref
Pankaj Kumar Singh, Bapi Gorain, Hira Choudhury, Sachin Kumar Singh, Pankaj Whadwa, Shilpa, Sanjeev Sahu, Monica Gulati & Prashant Kesharwani. (2020) Macrophage targeted amphotericin B nanodelivery systems against visceral leishmaniasis. Materials Science and Engineering: B 258, pages 114571.
Crossref
Shabi Parvez, Ganesh Yadagiri, Mallikarjuna Rao Gedda, Aakriti Singh, Om Prakash Singh, Anurag Verma, Shyam Sundar & Shyam Lal Mudavath. (2020) Modified solid lipid nanoparticles encapsulated with Amphotericin B and Paromomycin: an effective oral combination against experimental murine visceral leishmaniasis. Scientific Reports 10:1.
Crossref
Mallikarjuna Rao Gedda, Prasoon Madhukar, Alok Kumar Vishwakarma, Vimal Verma, Anurag Kumar Kushwaha, Ganesh Yadagiri, Shyam Lal Mudavath, Om Prakash Singh, Onkar Nath Srivastava & Shyam Sundar. (2020) Evaluation of Safety and Antileishmanial Efficacy of Amine Functionalized Carbon-Based Composite Nanoparticle Appended With Amphotericin B: An in vitro and Preclinical Study. Frontiers in Chemistry 8.
Crossref
Rania M. Hathout, AbdelKader A. Metwally, Timothy J. WoodmanJohn G. Hardy. (2020) Prediction of Drug Loading in the Gelatin Matrix Using Computational Methods. ACS Omega 5:3, pages 1549-1556.
Crossref
Om Prakash Singh, Mallikarjuna Rao Gedda, Shyam Lal Mudavath, Onkar Nath Srivastava & Shyam Sundar. (2019) Envisioning the innovations in nanomedicine to combat visceral leishmaniasis: for future theranostic application. Nanomedicine 14:14, pages 1911-1927.
Crossref
Omnia M. Ali, Yosra Hashem, Adnan A. Bekhit, Sherine N. Khattab, Kadria A. Elkhodairy, May S. Freag, Mohamed Teleb & Ahmed O. Elzoghby. 2019. Biopolymer Nanostructures for Food Encapsulation Purposes. Biopolymer Nanostructures for Food Encapsulation Purposes 189 216 .
Mallikarjuna Rao Gedda, Om Prakash Singh, Onkar Nath Srivastava & Shyam Sundar. 2019. Nanotechnology in Modern Animal Biotechnology. Nanotechnology in Modern Animal Biotechnology 195 220 .
Gul Shahnaz, Hafiz Shoaib Sarwar & Masoom Yasinzai. 2018. Leishmaniases as Re-emerging Diseases. Leishmaniases as Re-emerging Diseases.
D.M. Casa, D.B. Scariot, N.M. Khalil, C.V. Nakamura & R.M. Mainardes. (2018) Bovine serum albumin nanoparticles containing amphotericin B were effective in treating murine cutaneous leishmaniasis and reduced the drug toxicity. Experimental Parasitology 192, pages 12-18.
Crossref
Deepali Verma, Neha Gulati, Shreya Kaul, Siddhartha Mukherjee & Upendra Nagaich. (2018) Protein Based Nanostructures for Drug Delivery. Journal of Pharmaceutics 2018, pages 1-18.
Crossref
Pankaj K. Singh, Anil K. Jaiswal, Vivek K. Pawar, Kavit Raval, Animesh Kumar, Himangsu K. Bora, Anuradha Dube & Manish K. Chourasia. (2018) Fabrication of 3-O-sn-Phosphatidyl-L-serine Anchored PLGA Nanoparticle Bearing Amphotericin B for Macrophage Targeting. Pharmaceutical Research 35:3.
Crossref
Rudra Vaghela, Parthasarathi K. Kulkarni, Riyaz Ali M. Osmani, V. Naga Sravan Kumar Varma, Rohit R. Bhosale, Abhay Raizaday & Umme Hani. (2018) Design, development and evaluation of mannosylated oral Amphotericin B nanoparticles for anti-leishmanial therapy: Oral kinetics and macrophage uptake studies. Journal of Drug Delivery Science and Technology 43, pages 283-294.
Crossref
Hafiz Shoaib Sarwar, Sohail Akhtar, Muhammad Farhan Sohail, Zaeema Naveed, Muhammad Rafay, Akhtar Nadhman, Masoom Yasinzai & Gul Shahnaz. (2017) Redox biology of Leishmania and macrophage targeted nanoparticles for therapy . Nanomedicine 12:14, pages 1713-1725.
Crossref
German A. Islan, Marcela Durán, Maximiliano L. Cacicedo, Gerson Nakazato, Renata K.T. Kobayashi, Diego S.T. Martinez, Guillermo R. Castro & Nelson Durán. (2017) Nanopharmaceuticals as a solution to neglected diseases: Is it possible?. Acta Tropica 170, pages 16-42.
Crossref
Mohamed Gaber, Waseem Medhat, Mark Hany, Nourhan Saher, Jia-You Fang & Ahmed Elzoghby. (2017) Protein-lipid nanohybrids as emerging platforms for drug and gene delivery: Challenges and outcomes. Journal of Controlled Release 254, pages 75-91.
Crossref
Rehana Yasmin, Mohsin Shah, Saeed Ahmad Khan & Roshan Ali. (2017) Gelatin nanoparticles: a potential candidate for medical applications. Nanotechnology Reviews 6:2, pages 191-207.
Crossref
Swati Pund & Amita Joshi. 2017. Nano- and Microscale Drug Delivery Systems. Nano- and Microscale Drug Delivery Systems 439 480 .
AbdelKader A. Metwally, Sherweit H. El-Ahmady & Rania M. Hathout. (2016) Selecting optimum protein nano-carriers for natural polyphenols using chemoinformatics tools. Phytomedicine 23:14, pages 1764-1770.
Crossref
Priyanka Tripathi, Pankaj Dwivedi, Renuka Khatik, Anil Kumar Jaiswal, Anuradha Dube, Poonam Shukla & Prabhat Ranjan Mishra. (2015) Development of 4-sulfated N -acetyl galactosamine anchored chitosan nanoparticles: A dual strategy for effective management of Leishmaniasis. Colloids and Surfaces B: Biointerfaces 136, pages 150-159.
Crossref
Maria Jose Morilla & Eder Lilia Romero. 2015. Nanotechnology in Diagnosis, Treatment and Prophylaxis of Infectious Diseases. Nanotechnology in Diagnosis, Treatment and Prophylaxis of Infectious Diseases 297 317 .
Christiane L. Salgado, Alexandra A. P. Mansur, Herman S. Mansur & Fernando J. M. Monteiro. (2014) Fluorescent bionanoprobes based on quantum dot-chitosan–O-phospho- l -serine conjugates for labeling human bone marrow stromal cells . RSC Adv. 4:90, pages 49016-49027.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.