199
Views
32
CrossRef citations to date
0
Altmetric
Original Research Articles

Maintenance of a bone collagen phenotype by osteoblast-like cells in 3D periodic porous titanium (Ti-6Al-4 V) structures fabricated by selective electron beam melting

, , , &
Pages 351-360 | Received 08 Apr 2013, Accepted 03 Jul 2013, Published online: 30 Sep 2013

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (1)

C. Körner. (2016) Additive manufacturing of metallic components by selective electron beam melting — a review. International Materials Reviews 61:5, pages 361-377.
Read now

Articles from other publishers (31)

Amit Bandyopadhyay, Indranath Mitra, Jose D Avila, Mahadev Upadhyayula & Susmita Bose. (2023) Porous metal implants: processing, properties, and challenges. International Journal of Extreme Manufacturing 5:3, pages 032014.
Crossref
Meng Meng, Jinzuo Wang, Huagui Huang, Xin Liu, Jing Zhang & Zhonghai Li. (2023) 3D printing metal implants in orthopedic surgery: Methods, applications and future prospects. Journal of Orthopaedic Translation 42, pages 94-112.
Crossref
Aira Matsugaki, Tadaaki Matsuzaka & Takayoshi Nakano. (2023) Review—Metal Additive Manufacturing of Titanium Alloys for Control of Hard Tissue Compatibility. MATERIALS TRANSACTIONS 64:1, pages 25-30.
Crossref
Takayoshi Nakano & Koji Hagihara. 2022. Additive Manufacturing in Biomedical Applications. Additive Manufacturing in Biomedical Applications 416 433 .
S.L. Sing, S. Huang & W.Y. Yeong. 2022. Additive Manufacturing in Biomedical Applications. Additive Manufacturing in Biomedical Applications 192 200 .
Aira Matsugaki, Tadaaki Matsuzaka & Takayoshi Nakano. (2022) Metal additive manufacturing of titanium alloys for control of hard tissue compatibilityチタン合金の金属積層造形による硬組織適合性制御. Journal of Japan Institute of Light Metals 72:6, pages 339-343.
Crossref
L. Romero-Resendiz, M.C. Rossi, A. Álvarez, A. García-García, L. Milián, M.Á. Tormo-Más & V. Amigó-Borrás. (2022) Microstructural, mechanical, electrochemical, and biological studies of an electron beam melted Ti-6Al-4V alloy. Materials Today Communications 31, pages 103337.
Crossref
Yingchao Zhao, Zhen Wang, Jingzhou Zhao, Mubashir Hussain & Maonan Wang. (2022) Additive Manufacturing in Orthopedics: A Review. ACS Biomaterials Science & Engineering 8:4, pages 1367-1380.
Crossref
Paresh Kumar Samantaray. 2022. Nano-Enabled Technologies for Water Remediation. Nano-Enabled Technologies for Water Remediation 487 514 .
Junyi Liu, Nafisah Bte Mohd Rafiq, Lai Mun Wong & Shijie Wang. (2021) Surface Treatment and Bioinspired Coating for 3D-Printed Implants. Frontiers in Chemistry 9.
Crossref
Han Jun Gao, Hao Yuan, Jian Qiang Xia, Hong Wei Li & Yi Du Zhang. (2021) Design and Simulation of Ti6Al4V Cartilage Scaffold Based on Additive Manufacturing Technology. Materials Science Forum 1032, pages 114-119.
Crossref
Mikinobu Goto, Akihiko Matsumine, Seiji Yamaguchi, Hiroyuki Takahashi, Koji Akeda, Tomoki Nakamura, Kunihiro Asanuma, Tomiharu Matsushita, Tadashi Kokubo & Akihiro Sudo. (2020) Osteoconductivity of bioactive Ti-6Al-4V implants with lattice-shaped interconnected large pores fabricated by electron beam melting. Journal of Biomaterials Applications 35:9, pages 1153-1167.
Crossref
Mohammad Karimzadeh Kolamroudi, Mohammed Asmael, Mustafa Ilkan & Naser Kordani. (2021) Developments on Electron Beam Melting (EBM) of Ti–6Al–4V: A Review. Transactions of the Indian Institute of Metals 74:4, pages 783-790.
Crossref
Sharanjit Singh, Vishal S. Sharma, Anish Sachdeva, Vishal Sharma, Daljit Kaur, Bhargav Reddy Isanaka & Vinod Kushvaha. 2021. Additive and Subtractive Manufacturing of Composites. Additive and Subtractive Manufacturing of Composites 73 103 .
Suvro Kanti Chowdhury, Vasagiri Nagarjuna & Birru Bhaskar. 2021. Biomaterials in Tissue Engineering and Regenerative Medicine. Biomaterials in Tissue Engineering and Regenerative Medicine 19 60 .
Aira MATSUGAKI & Takayoshi NAKANO. (2020) 3D Printing of Biomaterials for Control of Cellular Behaviors3D プリンティングによる生体材料開発と細胞制御への応用. Journal of Smart Processing 9:4, pages 164-168.
Crossref
S.L. Sing, C.F. Tey, J.H.K. Tan, S. Huang & Wai Yee Yeong. 2020. Rapid Prototyping of Biomaterials. Rapid Prototyping of Biomaterials 17 40 .
Avik Sarker, Nhiem Tran, Aaqil Rifai, Milan Brandt, Phong A Tran, Martin Leary, Kate Fox & Richard Williams. (2019) Rational design of additively manufactured Ti6Al4V implants to control Staphylococcus aureus biofilm formation. Materialia 5, pages 100250.
Crossref
Aranka Ilea, Oana-Gabriela Vrabie, Anida-Maria Băbțan, Viorel Miclăuş, Flavia Ruxanda, Melinda Sárközi, Lucian Barbu-Tudoran, Voicu Mager, Cristian Berce, Bianca Adina Boșca, Nausica Bianca Petrescu, Oana Cadar, Radu Septimiu Câmpian & Réka Barabás. (2019) Osseointegration of titanium scaffolds manufactured by selective laser melting in rabbit femur defect model. Journal of Materials Science: Materials in Medicine 30:2.
Crossref
F. Bartolomeu, M.M. Costa, J.R. Gomes, N. Alves, C.S. Abreu, F.S. Silva & G. Miranda. (2019) Implant surface design for improved implant stability – A study on Ti6Al4V dense and cellular structures produced by Selective Laser Melting. Tribology International 129, pages 272-282.
Crossref
Amr Elshaer, Sawmya Nair & Hany Hassanin. 2019. Near Net Shape Manufacturing Processes. Near Net Shape Manufacturing Processes 79 104 .
Jaroslav Fojt, Michaela Fousova, Eva Jablonska, Ludek Joska, Vojtech Hybasek, Eva Pruchova, Dalibor Vojtech & Tomas Ruml. (2018) Corrosion behaviour and cell interaction of Ti-6Al-4V alloy prepared by two techniques of 3D printing. Materials Science and Engineering: C 93, pages 911-920.
Crossref
Abiy Wubneh, Eleni K. Tsekoura, Cagri Ayranci & Hasan Uludağ. (2018) Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomaterialia 80, pages 1-30.
Crossref
Avik Sarker, Nhiem Tran, Aaqil Rifai, Joe Elambasseril, Milan Brandt, Richard Williams, Martin Leary & Kate Fox. (2018) Angle defines attachment: Switching the biological response to titanium interfaces by modifying the inclination angle during selective laser melting. Materials & Design 154, pages 326-339.
Crossref
Zhonghan Wang, Chenyu Wang, Chen Li, Yanguo Qin, Lei Zhong, Bingpeng Chen, Zhaoyan Li, He Liu, Fei Chang & Jincheng Wang. (2017) Analysis of factors influencing bone ingrowth into three-dimensional printed porous metal scaffolds: A review. Journal of Alloys and Compounds 717, pages 271-285.
Crossref
Yufeng Zheng, Xiaoxue Xu, Zhigang Xu, Junqiang Wang & Hong Cai. 2017. Metallic Biomaterials. Metallic Biomaterials 255 291 .
A. Ataee, Y. Li, G. Song & C. Wen. 2017. Metallic Foam Bone. Metallic Foam Bone 83 110 .
Hong Wang, Bingjing Zhao, Changkui Liu, Chao Wang, Xinying Tan & Min Hu. (2016) A Comparison of Biocompatibility of a Titanium Alloy Fabricated by Electron Beam Melting and Selective Laser Melting. PLOS ONE 11:7, pages e0158513.
Crossref
Yun-Jeong Oh, Soohwang Seok, Sang-Hyeok Lee, Kwang-Mahn Kim, Jae-Sung Kwon & Bum-Soon Lim. (2016) Evaluation of Physical Properties of Titanium Specimen Fabricated by 3D Printing Technique. Korean Journal of Dental Materials 43:1, pages 29-42.
Crossref
Swee Leong Sing, Jia An, Wai Yee Yeong & Florencia Edith Wiria. (2016) Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs. Journal of Orthopaedic Research 34:3, pages 369-385.
Crossref
Patrik Stenlund, Shingo Kurosu, Yuichiro Koizumi, Felicia Suska, Hiroaki Matsumoto, Akihiko Chiba & Anders Palmquist. (2015) Osseointegration Enhancement by Zr doping of Co-Cr-Mo Implants Fabricated by Electron Beam Melting. Additive Manufacturing 6, pages 6-15.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.