319
Views
67
CrossRef citations to date
0
Altmetric
Research Article

Mitochondria-targeted liposomes improve the apoptotic and cytotoxic action of sclareol

, , , , , & show all
Pages 244-249 | Received 10 Aug 2009, Accepted 17 Sep 2009, Published online: 02 Nov 2009

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (4)

Qiao Li, Ting Zhou, Fei Wu, Na Li, Rui Wang, Qing Zhao, Yue-Ming Ma, Ji-Quan Zhang & Bing-Liang Ma. (2018) Subcellular drug distribution: mechanisms and roles in drug efficacy, toxicity, resistance, and targeted delivery. Drug Metabolism Reviews 50:4, pages 430-447.
Read now
Parul Benien, Melani A. Solomon, Paul Nguyen, Erin M. Sheehan, Ahmed S. Mehanna & Gerard G. M. D’Souza. (2016) Hydrophobized triphenyl phosphonium derivatives for the preparation of mitochondriotropic liposomes: choice of hydrophobic anchor influences cytotoxicity but not mitochondriotropic effect. Journal of Liposome Research 26:1, pages 21-27.
Read now
Sarandeep Singh Malhi & Rayasa S Ramachandra Murthy. (2012) Delivery to mitochondria: a narrower approach for broader therapeutics. Expert Opinion on Drug Delivery 9:8, pages 909-935.
Read now
Swati Biswas, Namita S. Dodwadkar, Rupa R. Sawant, Alexander Koshkaryev & Vladimir P. Torchilin. (2011) Surface modification of liposomes with rhodamine-123-conjugated polymer results in enhanced mitochondrial targeting. Journal of Drug Targeting 19:7, pages 552-561.
Read now

Articles from other publishers (63)

Mohammad Sameer Khan, B.H. Jaswanth Gowda, Waleed H. Almalki, Tanuja Singh, Amirhossein Sahebkar & Prashant Kesharwani. (2024) Unravelling the potential of mitochondria-targeted liposomes for enhanced cancer treatment. Drug Discovery Today 29:1, pages 103819.
Crossref
Tatiana Nikandrovna Pashirova, Andrey Vladimirovich Nemtarev, Eliana B Souto & Vladimir Fedorovich Mironov. (2023) Triarylphosphonium compounds as effective vectors for mitochondria-targeted delivery systems: decoration strategies and prospects for clinical application. Russian Chemical Reviews Успехи химии 92:10.
Crossref
Jianbo Zhou, Xiaofang Xie, Hailin Tang, Cheng Peng & Fu Peng. (2022) The bioactivities of sclareol: A mini review. Frontiers in Pharmacology 13.
Crossref
Ardhendu Kumar Mandal. (2022) Mitochondrial targeting of potent nanoparticulated drugs in combating diseases. Journal of Biomaterials Applications 37:4, pages 614-633.
Crossref
Juber Pendhari, Hemali Savla, Durga Bethala, Shashikant Vaidya, Ujwala Shinde & Mala Menon. (2022) Mitochondria targeted liposomes of metformin for improved anticancer activity: Preparation and evaluation. Journal of Drug Delivery Science and Technology 76, pages 103795.
Crossref
Kayalvizhi Rajendran, Akhilasree Karthikeyan & Uma Maheswari Krishnan. (2022) Emerging trends in nano-bioactive-mediated mitochondria-targeted therapeutic stratagems using polysaccharides, proteins and lipidic carriers. International Journal of Biological Macromolecules 208, pages 627-641.
Crossref
Shrey Shah, Miller Ouellette & Gerard G. M. D’Souza. (2022) In vitro assessment of stearyl triphenyl phosphonium toxicity in drug-resistant tumor cells. 4open 5, pages 6.
Crossref
Vijay Sharma & Kamla Pathak. 2022. Drug Delivery Systems for Metabolic Disorders. Drug Delivery Systems for Metabolic Disorders 411 423 .
Jiang-Lin Wang, Lu Zhang, Lian-Xun Gao, Ji-Lei Chen, Te Zhou, Yi Liu & Feng-Lei Jiang. (2021) A bright, red-emitting water-soluble BODIPY fluorophore as an alternative to the commercial Mito Tracker Red for high-resolution mitochondrial imaging. Journal of Materials Chemistry B 9:41, pages 8639-8645.
Crossref
Lara Milane, Saket Dolare, Tanjheela Jahan & Mansoor Amiji. (2021) Mitochondrial nanomedicine: Subcellular organelle-specific delivery of molecular medicines. Nanomedicine: Nanotechnology, Biology and Medicine 37, pages 102422.
Crossref
Saeed Mohammadian Haftcheshmeh, Mahmoud Reza Jaafari, Mohammad Mashreghi, Amin Mehrabian, Seyedeh Hoda Alavizadeh, Parvin Zamani, Javad Zarqi, Mohammad Hasan Darvishi & Fatemeh Gheybi. (2021) Liposomal doxorubicin targeting mitochondria: A novel formulation to enhance anti-tumor effects of Doxil® in vitro and in vivo. Journal of Drug Delivery Science and Technology 62, pages 102351.
Crossref
Si Si Liew, Xiaofei Qin, Jia Zhou, Lin Li, Wei Huang & Shao Q. Yao. (2020) Smart Design of Nanomaterials for Mitochondria‐Targeted Nanotherapeutics. Angewandte Chemie International Edition 60:5, pages 2232-2256.
Crossref
Si Si Liew, Xiaofei Qin, Jia Zhou, Lin Li, Wei Huang & Shao Q. Yao. (2020) Intelligentes Design von Nanomaterialien für Mitochondrien‐gerichtete Nanotherapeutika. Angewandte Chemie 133:5, pages 2260-2286.
Crossref
Gabriel Silva Marques Borges, Pedro Henrique Dias Moura Prazeres, Ângelo Malachias de Souza, Maria Irene Yoshida, José Mario Carneiro Vilela, Aline Teixeira Maciel e Silva, Mariana Silva Oliveira, Dawidson Assis Gomes, Margareth Spangler Andrade, Elaine Maria de Souza-Fagundes & Lucas Antônio Miranda Ferreira. (2021) Nanostructured lipid carriers as a novel tool to deliver sclareol: physicochemical characterisation and evaluation in human cancer cell lines. Brazilian Journal of Pharmaceutical Sciences 57.
Crossref
Harish Padh, Snehal Shenoy, Shreya Thakkar & Manju Misra. 2021. Mitochondrial Dysfunction and Nanotherapeutics. Mitochondrial Dysfunction and Nanotherapeutics 263 289 .
Amaraporn Wongrakpanich, Jiraphong Suksiriworapong, Sean M. Geary, Phawanan Sawangchan, Janjira Intra, Uracha Ruktanonchai & Aliasger K. Salem. 2021. Mitochondrial Dysfunction and Nanotherapeutics. Mitochondrial Dysfunction and Nanotherapeutics 291 310 .
Sabyasachi Chakrabortty, Sunil Kumar Vimal & Sanjib Bhattacharya. 2021. Nanopharmaceuticals: Principles and Applications Vol. 1. Nanopharmaceuticals: Principles and Applications Vol. 1 347 376 .
Parul Benien, Mohammed Almuteri, Shrey Shah, Mark Böhlke, Ahmed Mehanna & Gerard G. M. D’Souza. 2021. Mitochondrial Medicine. Mitochondrial Medicine 119 126 .
Olakunle Oladimeji, Jude Akinyelu & Moganavelli Singh. (2020) Nanomedicines for Subcellular Targeting: The Mitochondrial Perspective. Current Medicinal Chemistry 27:33, pages 5480-5509.
Crossref
Israa Assani, Ying Du, Chun-Gu Wang, Lei Chen, Pei-Lei Hou, Shi-Feng Zhao, Yan Feng, Ling-Fei Liu, Bo Sun, Yan Li, Zhi-Xin Liao & Ri-Zhen Huang. (2020) Anti-proliferative effects of diterpenoids from Sagittaria trifolia L. tubers on colon cancer cells by targeting the NF-κB pathway . Food & Function 11:9, pages 7717-7726.
Crossref
Milad Ashrafizadeh, Sara Javanmardi, Masoumeh Moradi-Ozarlou, Reza Mohammadinejad, Tahereh Farkhondeh, Saeed Samarghandian & Manoj Garg. (2020) Natural products and phytochemical nanoformulations targeting mitochondria in oncotherapy: an updated review on resveratrol. Bioscience Reports 40:4.
Crossref
Saravana Babu Chidambaram, Bipul Ray, Abid Bhat, Arehally Marappa Mahalakshmi, Tuladhar Sunanda, Padamati Jagadeeswari, Mysore Prakash Gowrav, Ramesh Chandra & Meena Kishore Sakharkar. 2020. Delivery of Drugs. Delivery of Drugs 97 117 .
Ji Hee Kang & Young Tag Ko. (2019) Enhanced Subcellular Trafficking of Resveratrol Using Mitochondriotropic Liposomes in Cancer Cells. Pharmaceutics 11:8, pages 423.
Crossref
Donato Cosco, Rosario Mare, Donatella Paolino, Maria Cristina Salvatici, Felisa Cilurzo & Massimo Fresta. (2019) Sclareol-loaded hyaluronan-coated PLGA nanoparticles: Physico-chemical properties and in vitro anticancer features. International Journal of Biological Macromolecules 132, pages 550-557.
Crossref
Gabriela Cavazza Cerri, Leandro Ceotto Freitas Lima, Deborah de Farias Lelis, Lucíola da Silva Barcelos, John David Feltenberger, Samuel Vidal Mussi, Renato Sobral Monteiro-Junior, Robson Augusto Souza dos Santos, Lucas Antônio Miranda Ferreira & Sérgio Henrique Sousa Santos. (2019) Sclareol-loaded lipid nanoparticles improved metabolic profile in obese mice. Life Sciences 218, pages 292-299.
Crossref
Magisetty Obulesu. 2019. Alzheimer's Disease Theranostics. Alzheimer's Disease Theranostics 45 50 .
Jingchao Xi, Meng Li, Benxin Jing, Myunggi An, Chunsong Yu, Cameron B. Pinnock, Yingxi Zhu, Mai T. Lam & Haipeng Liu. (2018) Long-Circulating Amphiphilic Doxorubicin for Tumor Mitochondria-Specific Targeting. ACS Applied Materials & Interfaces 10:50, pages 43482-43492.
Crossref
Hamed Hamishehkar, Mir Babak Bahadori, Somayeh Vandghanooni, Masoud Eskandani, Ailar Nakhlband & Morteza Eskandani. (2018) Preparation, characterization and anti-proliferative effects of sclareol-loaded solid lipid nanoparticles on A549 human lung epithelial cancer cells. Journal of Drug Delivery Science and Technology 45, pages 272-280.
Crossref
Imane Himri & Abdelkarim Guaadaoui. 2018. Nanostructures for the Engineering of Cells, Tissues and Organs. Nanostructures for the Engineering of Cells, Tissues and Organs 1 66 .
Zhenjie Wang, Weiling Guo, Xiao Kuang, Shanshan Hou & Hongzhuo Liu. (2017) Nanopreparations for mitochondria targeting drug delivery system: Current strategies and future prospective. Asian Journal of Pharmaceutical Sciences 12:6, pages 498-508.
Crossref
Jacek Zielonka, Joy Joseph, Adam Sikora, Micael Hardy, Olivier Ouari, Jeannette Vasquez-Vivar, Gang Cheng, Marcos Lopez & Balaraman Kalyanaraman. (2017) Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chemical Reviews 117:15, pages 10043-10120.
Crossref
MengJia Chen, Airen Xu, Wenyue He, Weicheng Ma & Song Shen. (2017) Ultrasound triggered drug delivery for mitochondria targeted sonodynamic therapy. Journal of Drug Delivery Science and Technology 39, pages 501-507.
Crossref
. 2016. Bio-Targets and Drug Delivery Approaches. Bio-Targets and Drug Delivery Approaches 259 289 .
Ru Wen, Bhabatosh Banik, Rakesh K. Pathak, Anil Kumar, Nagesh Kolishetti & Shanta Dhar. (2016) Nanotechnology inspired tools for mitochondrial dysfunction related diseases. Advanced Drug Delivery Reviews 99, pages 52-69.
Crossref
Aleš Prokop & Volkmar Weissig. 2016. Intracellular Delivery III. Intracellular Delivery III 3 36 .
Yuma Yamada & Hideyoshi Harashima. 2015. Encyclopedia of Biomedical Polymers and Polymeric Biomaterials. Encyclopedia of Biomedical Polymers and Polymeric Biomaterials 2883 2893 .
Bhuvaneshwar Vaidya & Vivek Gupta. (2015) Novel therapeutic approaches for pulmonary arterial hypertension: Unique molecular targets to site-specific drug delivery. Journal of Controlled Release 211, pages 118-133.
Crossref
A. Peralbo-Molina, M. Calderón-Santiago, F. Priego-Capote, B. Jurado-Gámez & M.D. Luque de Castro. (2015) Development of a method for metabolomic analysis of human exhaled breath condensate by gas chromatography–mass spectrometry in high resolution mode. Analytica Chimica Acta 887, pages 118-126.
Crossref
Shakeel-u-Rehman, Bilal Rah, Shabir H. Lone, Reyaz Ur Rasool, Saleem Farooq, Debasis Nayak, Naveed Anjum Chikan, Souneek Chakraborty, Akanksha Behl, Dilip Manikaro Mondhe, Anindya Goswami & Khursheed Ahmad Bhat. (2015) Design and Synthesis of Antitumor Heck-Coupled Sclareol Analogues: Modulation of BH3 Family Members by SS-12 in Autophagy and Apoptotic Cell Death. Journal of Medicinal Chemistry 58:8, pages 3432-3444.
Crossref
Ran Lin, Pengcheng Zhang, Andrew. G. Cheetham, Jeremy Walston, Peter Abadir & Honggang Cui. (2014) Dual Peptide Conjugation Strategy for Improved Cellular Uptake and Mitochondria Targeting. Bioconjugate Chemistry 26:1, pages 71-77.
Crossref
Udita Agrawal, Rajeev Sharma & Suresh P. Vyas. 2015. Targeted Drug Delivery : Concepts and Design. Targeted Drug Delivery : Concepts and Design 241 270 .
Bhushan S. Pattni & Vladimir P. Torchilin. 2015. Targeted Drug Delivery : Concepts and Design. Targeted Drug Delivery : Concepts and Design 3 38 .
Parul Benein, Mohammed A. Almuteri, Ahmed S. Mehanna & Gerard G. M. D’Souza. 2015. Mitochondrial Medicine. Mitochondrial Medicine 51 57 .
Amaraporn Wongrakpanich, Sean M Geary, Mei-ling A Joiner, Mark E Anderson & Aliasger K Salem. (2014) Mitochondria-targeting particles. Nanomedicine 9:16, pages 2531-2543.
Crossref
Basit Yameen, Won Il Choi, Cristian Vilos, Archana Swami, Jinjun Shi & Omid C. Farokhzad. (2014) Insight into nanoparticle cellular uptake and intracellular targeting. Journal of Controlled Release 190, pages 485-499.
Crossref
Shravan Kumar Sriraman & Vladimir P. Torchilin. 2014. Advanced Biomaterials and Biodevices. Advanced Biomaterials and Biodevices 79 119 .
Sae Rin Jean, David V. Tulumello, Simon P. Wisnovsky, Eric K. Lei, Mark P. Pereira & Shana O. Kelley. (2014) Molecular Vehicles for Mitochondrial Chemical Biology and Drug Delivery. ACS Chemical Biology 9:2, pages 323-333.
Crossref
Edina C. Wang & Andrew Z. Wang. (2014) Nanoparticles and their applications in cell and molecular biology. Integrative Biology 6:1, pages 9-26.
Crossref
Sean Essex & Vladimir Torchilin. 2014. Focal Controlled Drug Delivery. Focal Controlled Drug Delivery 93 116 .
Jimmy Pham, Bill Brownlow & Tamer Elbayoumi. (2013) Mitochondria-Specific Pro-Apoptotic Activity of Genistein Lipidic Nanocarriers. Molecular Pharmaceutics 10:10, pages 3789-3800.
Crossref
Melani A. Solomon, Anee A. Shah & Gerard G.M. D'Souza. (2013) In Vitro assessment of the utility of stearyl triphenyl phosphonium modified liposomes in overcoming the resistance of ovarian carcinoma Ovcar-3 cells to paclitaxel. Mitochondrion 13:5, pages 464-472.
Crossref
Amy Faulk, Volkmar Weissig & Tamer Elbayoumi. 2013. Cellular and Subcellular Nanotechnology. Cellular and Subcellular Nanotechnology 99 112 .
Sean Marrache & Shanta Dhar. (2012) Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proceedings of the National Academy of Sciences 109:40, pages 16288-16293.
Crossref
Swati Biswas, Namita S. Dodwadkar, Aleksandr Piroyan & Vladimir P. Torchilin. (2012) Surface conjugation of triphenylphosphonium to target poly(amidoamine) dendrimers to mitochondria. Biomaterials 33:18, pages 4773-4782.
Crossref
Swati Biswas, Namita S. Dodwadkar, Pranali P. Deshpande & Vladimir P. Torchilin. (2012) Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. Journal of Controlled Release 159:3, pages 393-402.
Crossref
Shelley A. Durazo & Uday B. Kompella. (2012) Functionalized nanosystems for targeted mitochondrial delivery. Mitochondrion 12:2, pages 190-201.
Crossref
Aristarchos Papagiannaros, Valeria Righi, George G. Day, Laurence G. Rahme, Philip K. Liu, Alan J. Fischman, Ronald G. Tompkins & A. Aria Tzika. (2012) Imaging C-Fos Gene Expression in Burns Using Lipid Coated Spion Nanoparticles. Advances in Molecular Imaging 02:04, pages 31-37.
Crossref
Volkmar Weissig. 2012. Nanomedicine - Cancer, Diabetes, and Cardiovascular, Central Nervous System, Pulmonary and Inflammatory Diseases. Nanomedicine - Cancer, Diabetes, and Cardiovascular, Central Nervous System, Pulmonary and Inflammatory Diseases 131 155 .
Vladimir Torchilin. 2012. Fundamentals and Applications of Controlled Release Drug Delivery. Fundamentals and Applications of Controlled Release Drug Delivery 289 328 .
Volkmar Weissig. (2011) From Serendipity to Mitochondria-Targeted Nanocarriers. Pharmaceutical Research 28:11, pages 2657-2668.
Crossref
Mayura A. Wagle, Laura E. Martinville & Gerard G. M. D’Souza. (2011) The Utility of an Isolated Mitochondrial Fraction in the Preparation of Liposomes for the Specific Delivery of Bioactives to Mitochondria in Live Mammalian Cells. Pharmaceutical Research 28:11, pages 2790-2796.
Crossref
Netanel Kolevzon, Uriel Kuflik, Miriam Shmuel, Sandrine Benhamron, Israel Ringel & Eylon Yavin. (2011) Multiple Triphenylphosphonium Cations as a Platform for the Delivery of a Pro-Apoptotic Peptide. Pharmaceutical Research 28:11, pages 2780-2789.
Crossref
Juber Pendhari, HEMALI SAVLA, DURGA BETHALA, SHASHIKANT VAIDYA, UJWALA SHINDE & Mala Menon. (2022) Mitochondria Targeted Liposomes of Metformin for Improved Anticancer Activity: Preparation and Evaluation. SSRN Electronic Journal.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.