410
Views
32
CrossRef citations to date
0
Altmetric
Research Article

Up-regulated expression of indoleamine 2,3-dioxygenase 1 in non-Hodgkin lymphoma correlates with increased regulatory T-cell infiltration

, , , , , & show all
Pages 405-414 | Received 29 Jan 2013, Accepted 08 May 2013, Published online: 26 Jun 2013

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (5)

Gongliang Guo, Liqun Sun, Lili Yang & Haiming Xu. (2019) IDO1 depletion induces an anti-inflammatory response in macrophages in mice with chronic viral myocarditis. Cell Cycle 18:20, pages 2598-2613.
Read now
Soo Jeong Nam, Sehui Kim, Dohee Kwon, Hannah Kim, Soyeon Kim, Eunyoung Lee, Tae Min Kim, Dae Seog Heo, Sung Hye Park, Megan S. Lim, Chul Woo Kim & Yoon Kyung Jeon. (2018) Prognostic implications of tumor-infiltrating macrophages, M2 macrophages, regulatory T-cells, and indoleamine 2,3-dioxygenase-positive cells in primary diffuse large B-cell lymphoma of the central nervous system. OncoImmunology 7:7.
Read now
Pilvi Maliniemi, Kirsi Laukkanen, Liisa Väkevä, Katja Dettmer, Tuomas Lipsanen, Leila Jeskanen, Alban Bessede, Peter J. Oefner, Marshall E. Kadin & Annamari Ranki. (2017) Biological and clinical significance of tryptophan-catabolizing enzymes in cutaneous T-cell lymphomas. OncoImmunology 6:3.
Read now
Serena Kimi Perna, Leslie E Huye & Barbara Savoldo. (2015) Management of patients with non-Hodgkin’s lymphoma: focus on adoptive T-cell therapy. ImmunoTargets and Therapy 4, pages 55-63.
Read now

Articles from other publishers (27)

Chen Xue, Ganglei Li, Qiuxian Zheng, Xinyu Gu, Qingmiao Shi, Yuanshuai Su, Qingfei Chu, Xin Yuan, Zhengyi Bao, Juan Lu & Lanjuan Li. (2023) Tryptophan metabolism in health and disease. Cell Metabolism 35:8, pages 1304-1326.
Crossref
Zachary M. Avigan, Leora S. Boussi & David E. Avigan. 2023.
Kamira Maharaj, Angimar Uriepero, Eva Sahakian & Javier Pinilla-Ibarz. (2022) Regulatory T cells (Tregs) in lymphoid malignancies and the impact of novel therapies. Frontiers in Immunology 13.
Crossref
Peiyun Liao, Ning Chang, Binyan Xu, Yingqi Qiu, Sheng Wang, Lijuan Zhou, Yanjie He, Xiaoling Xie & Yuhua Li. (2022) Amino acid metabolism: challenges and opportunities for the therapeutic treatment of leukemia and lymphoma. Immunology & Cell Biology 100:7, pages 507-528.
Crossref
Peter MartinNancy L. Bartlett, Julio C. ChavezJohn L. ReaganSonali M. Smith, Ann S. LaCasce, Jeffrey Jones, James Drew, Chengqing Wu, Erin MulveyMaria V. Revuelta, Leandro Cerchietti & John P. Leonard. (2022) Phase 1 study of oral azacitidine (CC-486) plus R-CHOP in previously untreated intermediate- to high-risk DLBCL. Blood 139:8, pages 1147-1159.
Crossref
Ludovica Di Martino, Valeria Tosello, Edoardo Peroni & Erich Piovan. (2021) Insights on Metabolic Reprogramming and Its Therapeutic Potential in Acute Leukemia. International Journal of Molecular Sciences 22:16, pages 8738.
Crossref
Lin Xiao, Harrison Yeung, Michelle Haber, Murray D. Norris & Klaartje Somers. (2021) Immunometabolism: A ‘Hot’ Switch for ‘Cold’ Pediatric Solid Tumors. Trends in Cancer 7:8, pages 751-777.
Crossref
Rui Qin, Chen Zhao, Chen-Ji Wang, Wei Xu, Jian-Yuan Zhao, Yan Lin, Yi-Yuan Yuan, Peng-Cheng Lin, Yao Li, Shimin Zhao & Yan Huang. (2021) Tryptophan potentiates CD8 + T cells against cancer cells by TRIP12 tryptophanylation and surface PD-1 downregulation . Journal for ImmunoTherapy of Cancer 9:7, pages e002840.
Crossref
Nikita Kotlov, Alexander Bagaev, Maria V. Revuelta, Jude M. Phillip, Maria Teresa Cacciapuoti, Zoya Antysheva, Viktor Svekolkin, Ekaterina Tikhonova, Natalia Miheecheva, Natalia Kuzkina, Grigorii Nos, Fabrizio Tabbo, Felix Frenkel, Paola Ghione, Maria Tsiper, Nava Almog, Nathan Fowler, Ari M. Melnick, John P. Leonard, Giorgio Inghirami & Leandro Cerchietti. (2021) Clinical and Biological Subtypes of B-cell Lymphoma Revealed by Microenvironmental Signatures. Cancer Discovery 11:6, pages 1468-1489.
Crossref
Pengcheng Li, Weiqi Xu, Furong Liu, He Zhu, Lu Zhang, Zeyang Ding, Huifang Liang & Jia Song. (2021) The emerging roles of IDO2 in cancer and its potential as a therapeutic target. Biomedicine & Pharmacotherapy 137, pages 111295.
Crossref
Aaron Balog, Tai-an Lin, Derrick Maley, Johnni Gullo-Brown, Enzo Hamza Kandoussi, Jianing Zeng & John T. Hunt. (2021) Preclinical Characterization of Linrodostat Mesylate, a Novel, Potent, and Selective Oral Indoleamine 2,3-Dioxygenase 1 Inhibitor. Molecular Cancer Therapeutics 20:3, pages 467-476.
Crossref
Nefertiti Muhammad, Hyun Min Lee & Jiyeon Kim. (2020) Oncology Therapeutics Targeting the Metabolism of Amino Acids. Cells 9:8, pages 1904.
Crossref
Lukas Lanser, Patricia Kink, Eva Maria Egger, Wolfgang Willenbacher, Dietmar Fuchs, Guenter Weiss & Katharina Kurz. (2020) Inflammation-Induced Tryptophan Breakdown is Related With Anemia, Fatigue, and Depression in Cancer. Frontiers in Immunology 11.
Crossref
Christiane A. Opitz, Luis F. Somarribas Patterson, Soumya R. Mohapatra, Dyah L. Dewi, Ahmed Sadik, Michael Platten & Saskia Trump. (2019) The therapeutic potential of targeting tryptophan catabolism in cancer. British Journal of Cancer 122:1, pages 30-44.
Crossref
Johanna Veldman, Lydia Visser, Anke van den Berg & Arjan Diepstra. (2020) Primary and acquired resistance mechanisms to immune checkpoint inhibition in Hodgkin lymphoma. Cancer Treatment Reviews 82, pages 101931.
Crossref
Palumbo, Parrinello, Giallongo, D’Amico, Zanghì, Puglisi, Conticello, Chiarenza, Tibullo, Raimondo & Romano. (2019) Monocytic Myeloid Derived Suppressor Cells in Hematological Malignancies. International Journal of Molecular Sciences 20:21, pages 5459.
Crossref
Michael Platten, Ellen A. A. Nollen, Ute F. Röhrig, Francesca Fallarino & Christiane A. Opitz. (2019) Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nature Reviews Drug Discovery 18:5, pages 379-401.
Crossref
Jean-Philippe Bastien, Annabelle Minguy, Vibhuti Dave & Denis Claude Roy. (2019) Cellular therapy approaches harnessing the power of the immune system for personalized cancer treatment. Seminars in Immunology 42, pages 101306.
Crossref
Diwakar Davar & Nathan Bahary. (2018) Modulating Tumor Immunology by Inhibiting Indoleamine 2,3-Dioxygenase (IDO): Recent Developments and First Clinical Experiences. Targeted Oncology 13:2, pages 125-140.
Crossref
Lieve Brochez, Ines Chevolet & Vibeke Kruse. (2017) The rationale of indoleamine 2,3-dioxygenase inhibition for cancer therapy. European Journal of Cancer 76, pages 167-182.
Crossref
Elina Timosenko, Andreas V Hadjinicolaou & Vincenzo Cerundolo. (2017) Modulation of cancer-specific immune responses by amino acid degrading enzymes. Immunotherapy 9:1, pages 83-97.
Crossref
Yangchun Xin & Hancheng Cai. (2016) Improved Radiosynthesis and Biological Evaluations of L- and D-1-[18F]Fluoroethyl-Tryptophan for PET Imaging of IDO-Mediated Kynurenine Pathway of Tryptophan Metabolism. Molecular Imaging and Biology.
Crossref
Amanda W.S. Yeung, Andrew C. TerentisNicholas J.C. King & Shane R. Thomas. (2015) Role of indoleamine 2,3-dioxygenase in health and disease. Clinical Science 129:7, pages 601-672.
Crossref
Joseph G. Taylor & John G. Gribben. (2015) Microenvironment abnormalities and lymphomagenesis: Immunological aspects. Seminars in Cancer Biology 34, pages 36-45.
Crossref
Soranobu Ninomiya, Neeharika Narala, Leslie Huye, Shigeki Yagyu, Barbara SavoldoGianpietro Dotti, Helen E. Heslop, Malcolm K. Brenner, Cliona M. Rooney & Carlos A. Ramos. (2015) Tumor indoleamine 2,3-dioxygenase (IDO) inhibits CD19-CAR T cells and is downregulated by lymphodepleting drugs. Blood 125:25, pages 3905-3916.
Crossref
Xuan Huang, Robert J. Gillies & Haibin Tian. (2015) Synthesis of [ 18 F] 4-amino- N -(3-chloro-4-fluorophenyl)- N? -hydroxy-1,2,5-oxadiazole-3-carboximidamide (IDO5L): a novel potential PET probe for imaging of IDO1 expression . Journal of Labelled Compounds and Radiopharmaceuticals 58:4, pages 156-162.
Crossref
Sarah Parisi & Antonio Curti. 2015. Targeting the Broadly Pathogenic Kynurenine Pathway. Targeting the Broadly Pathogenic Kynurenine Pathway 297 305 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.