960
Views
83
CrossRef citations to date
0
Altmetric
Original Articles: Research

Myeloid derived suppressor cells are numerically, functionally and phenotypically different in patients with multiple myeloma

, , , , , , , , , , , & show all
Pages 2893-2900 | Received 10 Dec 2013, Accepted 09 Mar 2014, Published online: 12 May 2014

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (3)

Maria Ozerova & Yulia Nefedova. (2019) Estrogen promotes multiple myeloma through enhancing the immunosuppressive activity of MDSC. Leukemia & Lymphoma 60:6, pages 1557-1562.
Read now
Barbara Castella, Myriam Foglietta, Patrizia Sciancalepore, Micol Rigoni, Marta Coscia, Valentina Griggio, Candida Vitale, Riccardo Ferracini, Elona Saraci, Paola Omedé, Chiara Riganti, Antonio Palumbo, Mario Boccadoro & Massimo Massaia. (2015) Anergic bone marrow Vγ9Vδ2 T cells as early and long-lasting markers of PD-1-targetable microenvironment-induced immune suppression in human myeloma. OncoImmunology 4:11.
Read now
Tamar Tadmor. (2014) The growing link between multiple myeloma and myeloid derived suppressor cells. Leukemia & Lymphoma 55:12, pages 2681-2682.
Read now

Articles from other publishers (80)

Connor M. D. Williams, Jacqueline E. Noll, Alanah L. Bradey, Jvaughn Duggan, Vicki J. Wilczek, Makutiro G. Masavuli, Branka Grubor‐Bauk, Romana A. Panagopoulos, Duncan R. Hewett, Krzysztof M. Mrozik, Andrew C. W. Zannettino, Kate Vandyke & Vasilios Panagopoulos. (2023) Myeloperoxidase creates a permissive microenvironmental niche for the progression of multiple myeloma. British Journal of Haematology.
Crossref
Paola Neri & Inger Nijhof. (2023) Evidence-based mechanisms of synergy with IMiD agent-based combinations in multiple myeloma. Critical Reviews in Oncology/Hematology 188, pages 104041.
Crossref
Vaishali Bhardwaj & Stephen M. Ansell. (2023) Modulation of T-cell function by myeloid-derived suppressor cells in hematological malignancies. Frontiers in Cell and Developmental Biology 11.
Crossref
Anna Kulikowska de Nałęcz, Lidia Ciszak, Lidia Usnarska-Zubkiewicz, Edyta Pawlak, Irena Frydecka, Magdalena Szmyrka & Agata Kosmaczewska. (2023) Inappropriate Expression of PD-1 and CTLA-4 Checkpoints in Myeloma Patients Is More Pronounced at Diagnosis: Implications for Time to Progression and Response to Therapeutic Checkpoint Inhibitors. International Journal of Molecular Sciences 24:6, pages 5730.
Crossref
Cindy Lin, Laura Garcia-Gerique, Erin E. Bonner, Jerome Mastio, Matthew Rosenwasser, Zachary Cruz, Michael Lawler, Luca Bernabei, Kar Muthumani, Qin Liu, Mortimer Poncz, Thomas Vogl, Marie Törngren, Helena Eriksson, Dan T. Vogl, Dmitry I. Gabrilovich & Yulia Nefedova. (2023) S100A8/S100A9 Promote Progression of Multiple Myeloma via Expansion of Megakaryocytes. Cancer Research Communications 3:3, pages 420-430.
Crossref
Camille V. Edwards, Hamza Hassan, Cenk Yildirim, Grace Ferri, Karina P. Verma, Mara E. Murray Horwitz, Nathanael R. Fillmore & Nikhil C. Munshi. (2023) Peripheral blood monocyte count is a dynamic prognostic biomarker in multiple myeloma. Blood Advances 7:4, pages 482-490.
Crossref
Krystle L. Ong, Marcus D. Davis, Kalyn K. Purnell, Hannah Cutshall, Harish C. Pal, Ashley N. Connelly, Christian X. Fay, Valeriya Kuznetsova, Elizabeth E. Brown & Zdenek Hel. (2023) Distinct phenotype of neutrophil, monocyte, and eosinophil populations indicates altered myelopoiesis in a subset of patients with multiple myeloma. Frontiers in Oncology 12.
Crossref
Claudia Giannotta, Federica Autino & Massimo Massaia. (2023) The immune suppressive tumor microenvironment in multiple myeloma: The contribution of myeloid-derived suppressor cells. Frontiers in Immunology 13.
Crossref
Federica Plano, Anna Maria Corsale, Emilia Gigliotta, Giulia Camarda, Candida Vullo, Marta Di Simone, Mojtaba Shekarkar Azgomi, Maria Speciale, Melania Carlisi, Nadia Caccamo, Francesco Dieli, Serena Meraviglia, Sergio Siragusa & Cirino Botta. (2023) Monoclonal Gammopathies and the Bone Marrow Microenvironment: From Bench to Bedside and Then Back Again. Hematology Reports 15:1, pages 23-49.
Crossref
Giuseppe Bertuglia, Lorenzo Cani, Alessandra Larocca, Francesca Gay & Mattia D’Agostino. (2022) Normalization of the Immunological Microenvironment and Sustained Minimal Residual Disease Negativity: Do We Need Both for Long-Term Control of Multiple Myeloma?. International Journal of Molecular Sciences 23:24, pages 15879.
Crossref
Shunjie Yu, Xiaotong Ren & Lijuan Li. (2022) Myeloid-derived suppressor cells in hematologic malignancies: two sides of the same coin. Experimental Hematology & Oncology 11:1.
Crossref
Jian Zhang, Shasha Jiang, Shilin Li, Jipeng Jiang, Jie Mei, Yandong Chen, Yongfu Ma, Yang Liu & Ying Liu. (2022) Nanotechnology: A New Strategy for Lung Cancer Treatment Targeting Pro-Tumor Neutrophils. Engineering.
Crossref
Kavita Ramji, Tomasz M. Grzywa, Anna Sosnowska, Aleksandra Paterek, Marta Okninska, Zofia Pilch, Joanna Barankiewicz, Filip Garbicz, Katarzyna Borg, Urszula Bany-Laszewicz, Abdesamad Zerrouqi, Beata Pyrzynska, Anna Rodziewicz-Lurzynska, Diana Papiernik, Piotr Sklepkiewicz, Hanna Kedzierska, Adam Staruch, Radoslaw Sadowski, Olga Ciepiela, Ewa Lech-Maranda, Przemyslaw Juszczynski, Urszula Mackiewicz, Michal Maczewski, Dominika Nowis & Jakub Golab. (2022) Targeting arginase-1 exerts antitumor effects in multiple myeloma and mitigates bortezomib-induced cardiotoxicity. Scientific Reports 12:1.
Crossref
Cinnie Yentia Soekojo & Wee Joo Chng. (2022) The evolution of immune dysfunction in multiple myeloma. European Journal of Haematology 109:5, pages 415-424.
Crossref
Rong Fan, Nathan De Beule, Anke Maes, Elke De Bruyne, Eline Menu, Karin Vanderkerken, Ken Maes, Karine Breckpot & Kim De Veirman. (2022) The prognostic value and therapeutic targeting of myeloid-derived suppressor cells in hematological cancers. Frontiers in Immunology 13.
Crossref
Rosario Hervás-Salcedo & Beatriz Martín-Antonio. (2022) A Journey through the Inter-Cellular Interactions in the Bone Marrow in Multiple Myeloma: Implications for the Next Generation of Treatments. Cancers 14:15, pages 3796.
Crossref
Zhigang Yi, Tao Ma, Jia Liu, Wenting Tie, Yanhong Li, Jun Bai, Lijuan Li & Liansheng Zhang. (2022) The yin–yang effects of immunity: From monoclonal gammopathy of undetermined significance to multiple myeloma. Frontiers in Immunology 13.
Crossref
Matthew J. Rees, Ashish Panigrahi, Simon J. Harrison, Andrew Spencer, Tiffany Khong, Simon Gibbs, Jay Hocking, Andrew Grigg & Daniela Zantomio. (2022) The impact of G-CSF alone vs G-CSF and cyclophosphamide mobilisation on autograft immune cell content in multiple myeloma. Bone Marrow Transplantation 57:6, pages 1001-1003.
Crossref
Muthulekha Swamydas, Elena V. Murphy, James J. Ignatz-Hoover, Ehsan Malek & James J. Driscoll. (2022) Deciphering mechanisms of immune escape to inform immunotherapeutic strategies in multiple myeloma. Journal of Hematology & Oncology 15:1.
Crossref
Ondrej Venglar, Julio Rodriguez Bago, Benjamin Motais, Roman Hajek & Tomas Jelinek. (2022) Natural Killer Cells in the Malignant Niche of Multiple Myeloma. Frontiers in Immunology 12.
Crossref
Julia Halper, Maria-Bernadette Madel & Claudine Blin-Wakkach. 2022. Bone Cancer. Bone Cancer 179 188 .
Dan Chen, Xinhong Yang, Min Liu, Zhihua Zhang & Enhong Xing. (2021) Roles of miRNA dysregulation in the pathogenesis of multiple myeloma. Cancer Gene Therapy 28:12, pages 1256-1268.
Crossref
Ilaria Saltarella, Aurelia Lamanuzzi, Benedetta Apollonio, Vanessa Desantis, Giulia Bartoli, Angelo Vacca & Maria Antonia Frassanito. (2021) Role of Extracellular Vesicle-Based Cell-to-Cell Communication in Multiple Myeloma Progression. Cells 10:11, pages 3185.
Crossref
Mi-Hyun Bae, Chan-Jeoung Park & Cheolwon Suh. (2021) Increased Monocytic Myeloid-Derived Suppressor Cells in Whole Blood Predict Poor Prognosis in Patients with Plasma Cell Myeloma. Journal of Clinical Medicine 10:20, pages 4717.
Crossref
T. A. Aristova, E. V. Batorov, V. V. Sergeevicheva, S. A. Sizikova, G. Yu. Ushakova, A. V. Gilevich, E. Ya. Shevela, A. A. Ostanin & E. R. Chernykh. (2021) Myeloidderived peripheral blood suppressor cells at haematopoietic stem cell mobilisation in multiple myeloma patients. Russian journal of hematology and transfusiology 66:2, pages 218-230.
Crossref
Julia Petersson, Sandra Askman, Åsa Pettersson, Stina Wichert, Thomas Hellmark, Åsa C. M. Johansson & Markus Hansson. (2021) Bone Marrow Neutrophils of Multiple Myeloma Patients Exhibit Myeloid-Derived Suppressor Cell Activity. Journal of Immunology Research 2021, pages 1-10.
Crossref
Liu Zhaoyun & Fu Rong. (2021) Predictive Role of Immune Profiling for Survival of Multiple Myeloma Patients. Frontiers in Immunology 12.
Crossref
Madelon M. E. de Jong, Zoltán Kellermayer, Natalie Papazian, Sabrin Tahri, Davine Hofste op Bruinink, Remco Hoogenboezem, Mathijs A. Sanders, Pieter C. van de Woestijne, P. Koen Bos, Cyrus Khandanpour, Jessica Vermeulen, Philippe Moreau, Mark van Duin, Annemiek Broijl, Pieter Sonneveld & Tom Cupedo. (2021) The multiple myeloma microenvironment is defined by an inflammatory stromal cell landscape. Nature Immunology 22:6, pages 769-780.
Crossref
Ji-Young Lim, Tae-Woo Kim, Da-Bin Ryu, Sung-Soo Park, Sung-Eun Lee, Byung-Soo Kim & Chang-Ki Min. (2021) Myeloma-Secreted Galectin-1 Potently Interacts with CD304 on Monocytic Myeloid-Derived Suppressor Cells. Cancer Immunology Research 9:5, pages 503-513.
Crossref
Alejandro Olivares-Hernández, Luis Figuero-Pérez, Eduardo Terán-Brage, Álvaro López-Gutiérrez, Álvaro Tamayo Velasco, Rogelio González Sarmiento, Juan Jesús Cruz-Hernández & José Pablo Miramontes-González. (2021) Resistance to Immune Checkpoint Inhibitors Secondary to Myeloid-Derived Suppressor Cells: A New Therapeutic Targeting of Haematological Malignancies. Journal of Clinical Medicine 10:9, pages 1919.
Crossref
Ellen McKenna, Aisling Ui Mhaonaigh, Richard Wubben, Amrita Dwivedi, Tim Hurley, Lynne A. Kelly, Nigel J. Stevenson, Mark A. Little & Eleanor J. Molloy. (2021) Neutrophils: Need for Standardized Nomenclature. Frontiers in Immunology 12.
Crossref
Andrea Díaz-Tejedor, Mauro Lorenzo-Mohamed, Noemí Puig, Ramón García-Sanz, María-Victoria Mateos, Mercedes Garayoa & Teresa Paíno. (2021) Immune System Alterations in Multiple Myeloma: Molecular Mechanisms and Therapeutic Strategies to Reverse Immunosuppression. Cancers 13:6, pages 1353.
Crossref
Samuel S. McCachren, Kavita M. Dhodapkar & Madhav V. Dhodapkar. (2021) Co-evolution of Immune Response in Multiple Myeloma: Implications for Immune Prevention. Frontiers in Immunology 12.
Crossref
Raquel Lopes, Joana Caetano, Bruna Ferreira, Filipa Barahona, Emilie Arnault Carneiro & Cristina João. (2021) The Immune Microenvironment in Multiple Myeloma: Friend or Foe?. Cancers 13:4, pages 625.
Crossref
Almudena García-Ortiz, Yaiza Rodríguez-García, Jessica Encinas, Elena Maroto-Martín, Eva Castellano, Joaquín Teixidó & Joaquín Martínez-López. (2021) The Role of Tumor Microenvironment in Multiple Myeloma Development and Progression. Cancers 13:2, pages 217.
Crossref
Saeko Kuwahara‐Ota, Yuji Shimura, Christian Steinebach, Reiko Isa, Junko Yamaguchi, Daichi Nishiyama, Yuto Fujibayashi, Tomoko Takimoto‐Shimomura, Yoshimi Mizuno, Yayoi Matsumura‐Kimoto, Taku Tsukamoto, Yoshiaki Chinen, Tsutomu Kobayashi, Shigeo Horiike, Masafumi Taniwaki, Michael Gütschow & Junya Kuroda. (2020) Lenalidomide and pomalidomide potently interfere with induction of myeloid‐derived suppressor cells in multiple myeloma. British Journal of Haematology 191:5, pages 784-795.
Crossref
Patrizia Leone, Antonio Giovanni Solimando, Eleonora Malerba, Rossella Fasano, Alessio Buonavoglia, Fabrizio Pappagallo, Valli De Re, Antonella Argentiero, Nicola Silvestris, Angelo Vacca & Vito Racanelli. (2020) Actors on the Scene: Immune Cells in the Myeloma Niche. Frontiers in Oncology 10.
Crossref
Matthew Ho, Chia Yin Goh, Ashish Patel, Susannah Staunton, Ronan O’Connor, Marc Godeau & Giada Bianchi. (2020) Role of the Bone Marrow Milieu in Multiple Myeloma Progression and Therapeutic Resistance. Clinical Lymphoma Myeloma and Leukemia 20:10, pages e752-e768.
Crossref
Emine Gulsen Gunes, Steven T. Rosen & Christiane Querfeld. (2020) The role of myeloid-derived suppressor cells in hematologic malignancies. Current Opinion in Oncology 32:5, pages 518-526.
Crossref
Antonio Giovanni Solimando, Angelo Vacca & Domenico Ribatti. (2020) A Comprehensive Biological and Clinical Perspective Can Drive a Patient-Tailored Approach to Multiple Myeloma: Bridging the Gaps between the Plasma Cell and the Neoplastic Niche. Journal of Oncology 2020, pages 1-16.
Crossref
A. Romano, N. L. Parrinello, V. Simeon, F. Puglisi, P. La Cava, C. Bellofiore, C. Giallongo, G. Camiolo, F. D’Auria, V. Grieco, F. Larocca, A. Barbato, D. Cambria, E. La Spina, D. Tibullo, G. A. Palumbo, C. Conticello, P. Musto & F. Di Raimondo. (2020) High-density neutrophils in MGUS and multiple myeloma are dysfunctional and immune-suppressive due to increased STAT3 downstream signaling. Scientific Reports 10:1.
Crossref
Sung-Eun Lee, Ji-Young Lim, Tae Woo Kim, Da-Bin Ryu, Sung Soo Park, Young-Woo Jeon, Jae-Ho Yoon, Byung-Sik Cho, Ki-Seong Eom, Yoo-Jin Kim, Hee-Je Kim, Seok Lee, Seok-Goo Cho, Dong-Wook Kim, Jong Wook Lee & Chang-Ki Min. (2019) Different role of circulating myeloid-derived suppressor cells in patients with multiple myeloma undergoing autologous stem cell transplantation. Journal for ImmunoTherapy of Cancer 7:1.
Crossref
Meng Lv, Ke Wang & Xiao-jun Huang. (2019) Myeloid-derived suppressor cells in hematological malignancies: friends or foes. Journal of Hematology & Oncology 12:1.
Crossref
A. A. Philchenkov. (2019) Bone marrow adipocytes and multiple myeloma. Oncohematology 14:1, pages 60-75.
Crossref
Nikoleta Bizymi, Sunčica Bjelica, Astrid Olsnes Kittang, Slavko Mojsilovic, Maria Velegraki, Charalampos Pontikoglou, Mikael Roussel, Elisabeth Ersvær, Juan Francisco Santibañez, Marie Lipoldová & Helen A. Papadaki. (2019) Myeloid-Derived Suppressor Cells in Hematologic Diseases: Promising Biomarkers and Treatment Targets. HemaSphere 3:1, pages e168.
Crossref
Laurens E. Franssen, Tuna Mutis, Henk M. Lokhorst & Niels W. C. J. van de Donk. (2019) Immunotherapy in myeloma: how far have we come?. Therapeutic Advances in Hematology 10, pages 204062071882266.
Crossref
Barry Paul, Shuqi Kang, Zhihong Zheng & Yubin Kang. (2018) The challenges of checkpoint inhibition in the treatment of multiple myeloma. Cellular Immunology 334, pages 87-98.
Crossref
Chia-Hung Yen & Hui-Hua Hsiao. (2018) NRF2 Is One of the Players Involved in Bone Marrow Mediated Drug Resistance in Multiple Myeloma. International Journal of Molecular Sciences 19:11, pages 3503.
Crossref
A. Betsch, O. Rutgeerts, S. Fevery, B. Sprangers, G. Verhoef, D. Dierickx & M. Beckers. (2018) Myeloid-derived suppressor cells in lymphoma: The good, the bad and the ugly. Blood Reviews 32:6, pages 490-498.
Crossref
Myrna R. Nahas, Jacalyn Rosenblatt, Hillard M. Lazarus & David Avigan. (2018) Anti-cancer vaccine therapy for hematologic malignancies: An evolving era. Blood Reviews 32:4, pages 312-325.
Crossref
Lifeng Li, Liping Wang, Jieyao Li, Zhirui Fan, Li Yang, Zhen Zhang, Chaoqi Zhang, Dongli Yue, Guohui Qin, Tengfei Zhang, Feng Li, Xinfeng Chen, Yu Ping, Dan Wang, Qun Gao, Qianyi He, Lan Huang, Hong Li, Jianmin Huang, Xuan Zhao, Wenhua Xue, Zhi Sun, Jingli Lu, Jane J. Yu, Jie Zhao, Bin Zhang & Yi Zhang. (2018) Metformin-Induced Reduction of CD39 and CD73 Blocks Myeloid-Derived Suppressor Cell Activity in Patients with Ovarian Cancer. Cancer Research 78:7, pages 1779-1791.
Crossref
Carlos Rosales. (2018) Neutrophil: A Cell with Many Roles in Inflammation or Several Cell Types?. Frontiers in Physiology 9.
Crossref
Marzena Garley & Ewa Jabłońska. (2017) Heterogeneity Among Neutrophils. Archivum Immunologiae et Therapiae Experimentalis 66:1, pages 21-30.
Crossref
Shih-Feng Cho, Liang Lin, Lijie Xing, Tengteng Yu, Kenneth Wen, Kenneth C. Anderson & Yu-Tzu Tai. (2017) Monoclonal Antibody: A New Treatment Strategy against Multiple Myeloma. Antibodies 6:4, pages 18.
Crossref
Anna Mansour, Abdelilah Wakkach & Claudine Blin-Wakkach. (2017) Emerging Roles of Osteoclasts in the Modulation of Bone Microenvironment and Immune Suppression in Multiple Myeloma. Frontiers in Immunology 8.
Crossref
DC Choi, D Tremblay, C Iancu-Rubin & J Mascarenhas. (2017) Programmed cell death-1 pathway inhibition in myeloid malignancies: implications for myeloproliferative neoplasms. Annals of Hematology 96:6, pages 919-927.
Crossref
Sarah E. Herlihy, Cindy Lin & Yulia Nefedova. (2017) Bone marrow myeloid cells in regulation of multiple myeloma progression. Cancer Immunology, Immunotherapy.
Crossref
Fotis Asimakopoulos, Chelsea Hope, Michael G Johnson, Adam Pagenkopf, Kimberly Gromek & Bradley Nagel. (2017) Extracellular matrix and the myeloid-in-myeloma compartment: balancing tolerogenic and immunogenic inflammation in the myeloma niche. Journal of Leukocyte Biology 102:2, pages 265-275.
Crossref
Jacalyn Rosenblatt & David Avigan. (2017) Targeting the PD-1/PD-L1 axis in multiple myeloma: a dream or a reality?. Blood 129:3, pages 275-279.
Crossref
Aleksandr Vasil'evich Ponomarev. (2017) Myeloid-Derived Suppressor Cells in Some Oncohematological Diseases. Clinical oncohematology 10:1, pages 29-38.
Crossref
D. E. Joshua, R. Brown, P. J. Ho, J. Gibson & H. Suen. 2017. Waldenström’s Macroglobulinemia. Waldenström’s Macroglobulinemia 83 94 .
Clement Chung. (2017) Role of Immunotherapy in Targeting the Bone Marrow Microenvironment in Multiple Myeloma: An Evolving Therapeutic Strategy. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy 37:1, pages 129-143.
Crossref
Cesarina Giallongo, Daniele Tibullo, Nunziatina L. Parrinello, Piera La Cava, Michelino Di Rosa, Vincenzo Bramanti, Cosimo Di Raimondo, Concetta Conticello, Annalisa Chiarenza, Giuseppe A. Palumbo, Roberto Avola, Alessandra Romano & Francesco Di Raimondo. (2016) Granulocyte-like myeloid derived suppressor cells (G-MDSC) are increased in multiple myeloma and are driven by dysfunctional mesenchymal stem cells (MSC). Oncotarget 7:52, pages 85764-85775.
Crossref
Patrizia Scapini, Olivia Marini, Cristina Tecchio & Marco A. Cassatella. (2016) Human neutrophils in the saga of cellular heterogeneity: insights and open questions. Immunological Reviews 273:1, pages 48-60.
Crossref
Ehsan Malek, Marcos de Lima, John J. Letterio, Byung-Gyu Kim, James H. Finke, James J. Driscoll & Sergio A. Giralt. (2016) Myeloid-derived suppressor cells: The green light for myeloma immune escape. Blood Reviews 30:5, pages 341-348.
Crossref
H Suen, R Brown, S Yang, C Weatherburn, P J Ho, N Woodland, N Nassif, P Barbaro, C Bryant, D Hart, J Gibson & D Joshua. (2016) Multiple myeloma causes clonal T-cell immunosenescence: identification of potential novel targets for promoting tumour immunity and implications for checkpoint blockade. Leukemia 30:8, pages 1716-1724.
Crossref
Claude Lambert, Yuenv Wu & Carmen Aanei. (2016) Bone Marrow Immunity and Myelodysplasia. Frontiers in Oncology 6.
Crossref
Marilène Binsfeld, Joséphine Muller, Virginie Lamour, Kim De Veirman, Hendrik De Raeve, Akeila Bellahcène, Els Van Valckenborgh, Frédéric Baron, Yves Beguin, Jo Caers & Roy Heusschen. (2016) Granulocytic myeloid-derived suppressor cells promote angiogenesis in the context of multiple myeloma. Oncotarget 7:25, pages 37931-37943.
Crossref
Olivia Marini, Cecilia Spina, Elda Mimiola, Adriana Cassaro, Giovanni Malerba, Giuseppe Todeschini, Omar Perbellini, Maria Scupoli, Giuseppe Carli, Davide Facchinelli, Marco Cassatella, Patrizia Scapini & Cristina Tecchio. (2016) Identification of granulocytic myeloid-derived suppressor cells (G-MDSCs) in the peripheral blood of Hodgkin and non-Hodgkin lymphoma patients. Oncotarget 7:19, pages 27676-27688.
Crossref
Camille Guillerey, Kyohei Nakamura, Slavica Vuckovic, Geoffrey R. Hill & Mark J. Smyth. (2016) Immune responses in multiple myeloma: role of the natural immune surveillance and potential of immunotherapies. Cellular and Molecular Life Sciences 73:8, pages 1569-1589.
Crossref
Michele Moschetta, Yawara Kawano & Klaus Podar. 2016. Plasma Cell Dyscrasias. Plasma Cell Dyscrasias 63 102 .
Susan J. Lee & Ivan Borrello. 2016. Plasma Cell Dyscrasias. Plasma Cell Dyscrasias 207 225 .
Frederick L Locke, Meghan Menges, Anandharaman Veerapathran, Domenico Coppola, Dmitry Gabrilovich & Claudio Anasetti. (2015) Survivin-specific CD4+ T cells are decreased in patients with survivin-positive myeloma. Journal for Immunotherapy of Cancer 3:1.
Crossref
Güllü Görgün, Mehmet K. Samur, Kristen B. Cowens, Steven Paula, Giada Bianchi, Julie E. Anderson, Randie E. White, Ahaana Singh, Hiroto Ohguchi, Rikio Suzuki, Shohei Kikuchi, Takeshi Harada, Teru Hideshima, Yu-Tzu Tai, Jacob P. Laubach, Noopur Raje, Florence Magrangeas, Stephane Minvielle, Herve Avet-Loiseau, Nikhil C. Munshi, David M. Dorfman, Paul G. Richardson & Kenneth C. Anderson. (2015) Lenalidomide Enhances Immune Checkpoint Blockade-Induced Immune Response in Multiple Myeloma. Clinical Cancer Research 21:20, pages 4607-4618.
Crossref
Yaghoub Yazdani, Mousa Mohammadnia-Afrouzi, Mehdi Yousefi, Enayat Anvari, Ghasem Ghalamfarsa, Hadi Hasannia, Sanam Sadreddini & Farhad Jadidi-Niaragh. (2015) Myeloid-derived suppressor cells in B cell malignancies. Tumor Biology 36:10, pages 7339-7353.
Crossref
Max Kullberg, Holly Martinson, Kristine Mann & Thomas J. Anchordoquy. (2015) Complement C3 mediated targeting of liposomes to granulocytic myeloid derived suppressor cells. Nanomedicine: Nanotechnology, Biology and Medicine 11:6, pages 1355-1363.
Crossref
Eileen Uribe-Querol & Carlos Rosales. (2015) Neutrophils in Cancer: Two Sides of the Same Coin. Journal of Immunology Research 2015, pages 1-21.
Crossref
Valeria Quarona, Valentina Ferri, Antonella Chillemi, Marina Bolzoni, Cristina Mancini, Gianluca Zaccarello, Ilaria Roato, Fabio Morandi, Danilo Marimpietri, Giuliano Faccani, Eugenia Martella, Vito Pistoia, Nicola Giuliani, Alberto L. Horenstein & Fabio Malavasi. (2015) Unraveling the contribution of ectoenzymes to myeloma life and survival in the bone marrow niche. Annals of the New York Academy of Sciences 1335:1, pages 10-22.
Crossref
Yawara Kawano, Michele Moschetta, Salomon Manier, Siobhan Glavey, Güllü T. Görgün, Aldo M. Roccaro, Kenneth C. Anderson & Irene M. Ghobrial. (2014) Targeting the bone marrow microenvironment in multiple myeloma. Immunological Reviews 263:1, pages 160-172.
Crossref
Cirino Botta, Annamaria Gullà, Pierpaolo Correale, Pierosandro Tagliaferri & Pierfrancesco Tassone. (2014) Myeloid-Derived Suppressor Cells in Multiple Myeloma: Pre-Clinical Research and Translational Opportunities. Frontiers in Oncology 4.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.